首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   15篇
  国内免费   9篇
测绘学   4篇
大气科学   23篇
地球物理   151篇
地质学   142篇
海洋学   103篇
天文学   116篇
综合类   2篇
自然地理   21篇
  2021年   6篇
  2020年   6篇
  2019年   14篇
  2018年   4篇
  2017年   14篇
  2016年   7篇
  2015年   11篇
  2014年   31篇
  2013年   17篇
  2012年   18篇
  2011年   20篇
  2010年   29篇
  2009年   25篇
  2008年   28篇
  2007年   24篇
  2006年   31篇
  2005年   20篇
  2004年   25篇
  2003年   9篇
  2002年   22篇
  2001年   18篇
  2000年   11篇
  1999年   13篇
  1998年   12篇
  1997年   9篇
  1996年   6篇
  1995年   7篇
  1994年   6篇
  1993年   11篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   11篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   8篇
  1982年   6篇
  1981年   7篇
  1978年   2篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   7篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有562条查询结果,搜索用时 13 毫秒
171.
172.
Pargasite commonly occurs in the dacitic groundmass of the 1991–1995 eruption products of Unzen volcano. We described the occurrence and chemical compositions of amphibole in the dacite, and also carried out melting experiments to determine the low-pressure stability limit of amphibole in the dacite. The 1991–1995 ejecta of the Unzen volcano show petrographic evidence of magma mixing, such as reverse compositional zoning of plagioclase and amphibole phenocrysts, and we used a groundmass separate as a starting material for the experiments. Reversed experiments show that the maximum temperature for the crystallization of amphibole is 930°C at 196 MPa, 900°C at 98 MPa, and 820°C at 49 MPa. Compared with the experimental results on the Mount St. Helens dacite, present experiments on the Unzen dacitic groundmass show that amphibole is stable to pressures ca. 50 MPa lower at 850°C. Available Fe–Ti oxide thermometry indicates the crystallization temperature of the groundmass of the Unzen dacite to be 880±30°C, suggesting that the groundmass pargasite crystallized at >70 MPa, corresponding to a depth of more than 3 km in the conduit. The chlorine content of the groundmass pargasite is much lower than that of phenocrystic magnesiohornblende in the 1991–1995 dacite of Unzen volcano, indicating that vesiculation/degassing of magma took place before the crystallization of the groundmass pargasite. The present study shows that the magma was water oversaturated and that the degassing of magma along with magma mixing caused crystallization of the groundmass amphibole at depths of more than 3 km in the conduit.  相似文献   
173.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   
174.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
175.
In the near future, a new generation of sample return missions (Hayabusa2, OSIRIS‐REx, MMX, etc.) will collect samples from small solar system bodies. To maximize the scientific outcome of laboratory studies and minimize the loss of precious extraterrestrial samples, an analytical sequence from less destructive to more destructive techniques needs to be established. In this work, we present a combined X‐ray and IR microtomography applied to five Itokawa particles and one fragment of the primitive carbonaceous chondrite Paris. We show that this analytical approach is able to provide a 3‐D physical and chemical characterization of individual extraterrestrial particles, using the measurement of their 3‐D structure and porosity, and the detection of mineral and organic phases, and their spatial co‐localization in 3‐D. We propose these techniques as an efficient first step in a multitechnique analytical sequence on microscopic samples collected by space missions.  相似文献   
176.
To investigate the suitability of synthetic aperture radar (SAR) polarization data to estimate the sea-ice thickness in early summer in Lutzow-Holm Bay, Antarctica, we compared in situ ice thicknesses with the corresponding backscattering co-efficient for each polarization and the VV-to-HH backscattering ratio. The VV-to-HH backscattering ratio was derived from data acquired by ENVISAT Advanced SAR (ASAR). This ratio is related to the near-surface dielectric constant of the sea ice, which is, in turn, related to the developing process of ice and, thus, its thickness via changes in the near-surface sea-ice salinity. The sea ice encountered in the study area is close first-year pack ice and fast ice. For these old and relatively rough sea-ice types, the VV-to-HH backscattering ratio can be expected to depend on salinity-driven changes in the near-surface dielectric constant rather than changes of the surface roughness. We applied the empirical relationships between the ice thickness and the VV-to-HH backscattering ratio with the linear and logarithm fits to ASAR data. The linear fit gave the reliable result, with an rms error being 0.08 m and a correlation coefficient being 0.91, when compared to in situ fast-ice thickness.  相似文献   
177.
178.
Detailed depth profiles of photosynthetic pigments in a sediment core (G-12) collected at the BDP93 site, the Buguldeika saddle, of south Lake Baikal, along with depth profiles of total organic carbon (TOC) and biogenic silica, were studied to elucidate the temporal changes of phytoplankton assemblages in the lake during the past 28 kyr. In addition to the quantification of carotenoids by high-performance liquid chromatography with photodiode-array detection (HPLC-PDA), steryl chlorin esters (SCEs) were analyzed by HPLC-PDA, HPLC-mass spectrometry (LC-MS) and sterols in SCEs by gas chromatography–mass spectrometry (GC–MS) to enrich the taxonomical information on the phytoplankton composition. Allochthonous input of organic matter from the Selenga River resulted in the higher TOC contents in core G-12 than in a previously reported core (G-6) collected at another site from the southern basin. The poorer correlation in core G-12 than in G-6 between TOC and chlorophyll-a-originating pigments, which are indicative of autochthonous production, also indicated a significant allochthonous input at the site. The abundance of lutein among the carotenoids detected, and the good correlation of total chlorophyll a and b shows that green algae represented a significant portion of the phytoplankton, accompanying the diatoms at the G-12 site, after the last glacial period. The presence of cryptomonads and cyanobacteria were confirmed from marker carotenoids in the sediment core. GC–MS analysis of sterols in SCEs detected marker sterols of diatoms, green algae, chrysophytes and dinoflagellates. The depth profiles of the measured indicators gave consistent features for temporal changes in phytoplankton assemblage at the G-12 site of Lake Baikal after the last glacial maximum. Notably, the profile of a chrysophyte-specific sterol in SCEs was consistent with the reported distribution of chrysophyte cysts during the Holocene. The presence of phytoplankton, such as green algae, diatoms and chrysophytes, in Lake Baikal during the late last glacial period was indicated by the analysis of sterols in SCEs. Sedimentary carotenoids and sterols in SCEs were found to give complementary information about phytoplankton composition. These molecular indicators allow us to reconstruct past lake phytoplankton assemblages responding to environmental changes with a time resolution as high as age–depth relationship in sediments attainable at present.  相似文献   
179.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   
180.
Takeshi  Tsuji  Yasuyuki  Nakamura  Hidekazu  Tokuyama  Millard F.  Coffin  Keita  Koda 《Island Arc》2007,16(3):361-373
Abstract   To show the structure of oceanic crust and Moho around the eastern Ogasawara Plateau, we have analyzed industry-standard two-dimensional multichannel seismic reflection data. To obtain improved velocity models, phase information of seismic signals was used for velocity analysis and velocity models for oceanic crust above Moho were determined. We apply this velocity analysis technique to seismic reflection data around the eastern Ogasawara Plateau, with the result of clear images of structures within oceanic crust and Moho. South of the Ogasawara Plateau, Moho deepens proximal to the Plateau. Moho distal to the Plateau is ca 7 km below sea floor (bsf), whereas it is ca 10 km bsf near the Plateau. The characters of oceanic crust and Moho differ significantly north and south of the Plateau. To the north, the structure of oceanic crust is ambiguous, the sea floor is shallower and less smooth, and Moho is discontinuous. To the south, structures within oceanic crust and Moho are imaged clearly, and the sea floor is deeper. A strong Moho reflection south of the Plateau might represent a sharp boundary between layered gabbro and peridotite. However, discontinuous Moho reflections north of the Plateau might represent rough topography because of intensive magmatism or a gradual downward increase in velocity within a thick Moho transition zone. A fracture zone north of the Plateau also appears to separate oceanic crust and Moho of different characters, suggesting vigorous magmatism between the Plateau and the fracture zone, and that the Ogasawara Plateau and the fracture zone influenced the genesis of oceanic crust and upper mantle. Differences in acoustic characteristics to the north and south of the Plateau are apparent in profiles illuminated by seismic attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号