首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   10篇
  国内免费   6篇
大气科学   3篇
地球物理   45篇
地质学   62篇
海洋学   22篇
天文学   23篇
综合类   3篇
自然地理   8篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   12篇
  2015年   5篇
  2014年   13篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1979年   1篇
排序方式: 共有166条查询结果,搜索用时 406 毫秒
51.
We analyze high sampling waveforms of the initial part of P-wave recorded at the 1800-m-deep borehole seismographs at the Nojima fault from December 1999 to May 2000 to clarify the initial rupture process of microearthquakes. We select 12 events with high S/N, whose magnitudes range from −0.3 to 2.2 and hypocentral distances from 1 to 11 km. We adopt the two different source models by Sato and Hirasawa (1973) and by Sato and Kanamori (1999). The former (model by Sato and Hirasawa (SH model)) generates only a ramp-like onset of velocity pulse. The later (model by Sato and Kanamori (SK model)) is able to generate a weak initial phase that is controlled by a trigger factor and the length of pre-existing crack. We perform the waveform inversion to estimate the optimum source parameters of each model. Waveforms of 5 of the 12 events are clearly reproduced by both SH model and SK model with a large trigger factor and a small length of pre-existing crack. The others are explained by not SH model but only SK model with a small trigger factor and a large length of the pre-existing crack, indicating that the weak initial phase is a nucleation phase and reflects the source process. These seven events satisfy roughly a relation that a large event has a large length of the pre-existing crack; the final crack length is proportional to the length of the pre-existing crack.  相似文献   
52.
Zak?odzie is an enstatite meteorite of unknown petrogenesis. Chemically, it resembles enstatite chondrites, but displays an achondrite‐like texture. Here we report on fabric and texture analyses of Zak?odzie utilizing X‐ray computed tomography and scanning electron microscopy and combine it with a nanostructural study of striated pyroxene by transmission electron microscopy. With this approach we identify mechanisms that led to formation of the texture and address the petrogenesis of the rock. Zak?odzie experienced a shock event in its early evolution while located at some depth inside a warm parent body. Shock‐related strain inverted pyroxene to the observed mixture of intercalated orthorhombic and monoclinic polymorphs. The heat that dissipated after the peak shock was added to primary, radiogenic‐derived heat and led to a prolonged thermal event. This caused local, equilibrium‐based partial melting of plagioclase and metal‐sulfide. Partial melting was followed by two‐stage cooling. The first phase of annealing (above 500 °C) allowed for crystallization of plagioclase and for textural equilibration of metal and sulfides with silicates. Below 500 °C, cooling was faster and more heterogeneous at cm scale, allowing retention of keilite and quenching of K‐rich feldspathic glass in some parts. Our study indicates that Zak?odzie is neither an impact melt rock nor a primitive achondrite, as suggested in former studies. An impact melt origin is excluded because enstatite in Zak?odzie was never completely melted and partial melting occurred during equilibrium‐based postshock conditions. Texturally, the rock represents a transition of chondrite and achondrite and was formed when early impact heat was added to internal radiogenic heat.  相似文献   
53.
We have studied magnetic fractions of five acapulcoites, three lodranites, and two winonaites to investigate chemical compositions of their precursor materials and metallic partial melting processes occurring on their parent bodies. One winonaite metal is similar in composition to low Au, low Ni IAB iron subgroup, indicating genetic relationship between them. Magnetic fractions of chondrule‐bearing acapulcoite and winonaite have intermediate chemical compositions of metals between H chondrites and EL chondrites. This fact indicates that the precursor materials of acapulcoite–lodranites and winonaites were similar to H and/or EL chondrites in chemical compositions. Magnetic fractions in acapulcoite–lodranites have a large variety of chemical compositions. Most of them show enrichments of W, Re, Ir, Pt, Mo, and Rh, and one of them shows clear depletion in Re and Ir relative to those of chondrule‐bearing acapulcoite. Chemical compositional variations among acapulcoite–lodranite metals cannot be explained by a single Fe‐Ni‐S partial melting event, but a two‐step partial melting model can explain it.  相似文献   
54.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
55.
56.
57.
58.
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the “memory” of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.  相似文献   
59.
We experimentally studied hydrogen (H)–deuterium (D) substitution reactions of solid methylamine (CH3NH2) under astrophysically relevant conditions. We also calculated the potential energy surface for the H–D substitution reactions of methylamine isotopologues using quantum chemical methods. Despite the relatively large energy barrier of more than 18 kJ mol?1, CH3NH2 reacted with D atoms to yield deuterated methylamines at 10 K, suggesting that the H–D substitution reaction proceeds through quantum tunneling. Deuterated methylamines reacted with H atoms as well. On the basis of present results, we propose that methylamine has potential for D enrichment through atomic surface reactions on interstellar grains at very low temperatures in molecular clouds. D enrichment would occur in particular in the methyl group of methylamine.  相似文献   
60.
We present a low cost meteor observation system based on the radio forward scattering and interferometry technique at Kochi University of Technology (KUT). The system can be a suitable model for low budget educational institutes that target practical learning of astronomical objects and upper atmospheric characteristics. The system methodology for the automatic counting of meteor echoes, filtering noise and detecting meteor echo directions is described. Detection of the meteor echo directions, which is the basic element for determining the meteor trajectories and the orbital parameters of parent comets, is based on a software system developed for analysis of phase differences detected by interferometry. Randomly selected observation samples measured by the radio interferometer are compared to simultaneous optical observations by video cameras to verify the system accuracy. Preliminary error analysis revealed that the system accuracy is directly related to the duration of observed meteor echoes. Eighty percent of meteor echo samples with durations longer than 3 s showed agreement in azimuth and elevation angles measurements to within a 10° error range, while meteor echo samples with shorter durations showed lower agreement levels probably due to the low system sampling resolution of 0.1 s. The reasonable agreement level of meteor echoes with duration longer than 3 s demonstrated the applicability of the system methodology. Accurate observation of shorter duration meteor echoes could possibly be achieved by improving the system resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号