全文获取类型
收费全文 | 128篇 |
免费 | 3篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 3篇 |
大气科学 | 1篇 |
地球物理 | 29篇 |
地质学 | 21篇 |
海洋学 | 61篇 |
天文学 | 15篇 |
综合类 | 1篇 |
自然地理 | 2篇 |
出版年
2022年 | 1篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 2篇 |
2015年 | 3篇 |
2014年 | 3篇 |
2013年 | 4篇 |
2012年 | 1篇 |
2011年 | 4篇 |
2010年 | 2篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 5篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 6篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 7篇 |
1998年 | 2篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 6篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 7篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1975年 | 4篇 |
1974年 | 4篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
排序方式: 共有133条查询结果,搜索用时 15 毫秒
31.
During the 2000 activity of Miyake-jima volcano, Japan, we detected long period seismic signals with initial pulse widths of 1-2 s, accompanied by infrasonic pulses with almost the same pulse widths. The seismic signals were observed from 13 July 2000, a day before the second summit eruption. The occurrences of the seismic signals were intermittent with a gradual increase in their magnitudes and numbers building toward a significant explosive eruption on 18 August. After the eruption, the seismic and infrasonic events ceased. The results of a waveform inversion show that the initial motions were excited by an isotropic inflation source beneath the south edge of the caldera at a depth of 1.4 km. On the other hand, the sources of the infrasonic pulses were located in the summit caldera area. The times at which the infrasonic pulses were emitted at the surface were delayed by about 3 s from the origin times of the seismic events. It is suggested that small isotropic inflations excited seismic waves in the crust and simultaneously caused acoustic waves that traveled in the conduit and produced infrasonic pulses at the crater bottom. Considering the observed time differences and gas temperatures emitted from the vent, the conduit should have been filled with vapor mixed with SO2 gas and volcanic ash. The change of the time differences between the seismic and infrasonic signals suggests that the seismic source became shallower within half a day before the August 18 explosive eruption. We interpret the source process as a fragmentation process of magma in which gas bubbles burst and quickly released part of the pressure that had been sustained by the tensional strength of magma. 相似文献
32.
The selectivity of amino acid assimilation by marine bacteria was examined using seven kinds of14C-amino acids and the acid hydrolysate of14C-labelled proteins. It was found that the net assimilation and respiration by marine bacteria followed MICHAELIS-MENTEN kinetics for all of amino acids used in our experiments. Maximum velocities of amino acids were 0.01 to 0.19g carbon/hour per 2×107 cells for net assimilation and less than 0.18g carbon/hour per 2×107 cells for respiration at 20C. The velocity of gross assimilation was found with the following order: phenylalanine>valine, glutamic acid>serine, arginine>tryptophan>glycine. The assimilation velocities of amino acids in these laboratory works showed almost the same order as those in field experiments. The assimilation velocity of an amino acid was influenced by coexisting another amino acids or glucose. The assimilation velocity in lower substrate range of amino acids was directly proportional to the number of bacterial cells in the range from 6×102 to 3×104 cells per ml. No linear relation between the assimilation velocity of amino acids and reciprocal of absolute temperature was found, but a marked bending was observed at 15 to 20C. The velocity at the optimum temperature was three to six times of that at 5C. 相似文献
33.
The interannual variability of the temperature structure of the Kuroshio Extension is studied by establishing time series for the period 1950 to 1970 and then comparing it with the time series of sea level differences across the North Equatorial Current obtained by Wyrtki (1975). First, the present analysis shows a significant correlation between the interannual fluctuation of the Kuroshio Extension and the eddy activity south of the Kuroshio axis, suggesting the importance of the eddy-driven mechanism. Secondly, spectral analysis shows close connections between the Kuroshio Extension and the North Equatorial Current with a reasonable time lag of about 1.5 years. This time lag of the mid-latitude variability is also supported by other independent data. In particular, the present preliminary study strongly suggests that the bimodal behavior of the Kuroshio path south of Japan and the intensity of the Kuroshio Countercurrent are closely connected with the Southern Oscillation/El Niño. 相似文献
34.
By synthesizing data of the turbulent structure beneath wind waves in laboratory tanks, with some re-analyses, we propose the existence of a particular turbulent boundary layer which is directly coupled with wind waves, a downward-bursting boundary layer (DBBL) in water beneath wind waves. The data set indicates that the depth of this layer is from 3 to 7, or about 5 times the significant wave height of wind waves. The data observed in laboratory tanks agree with data of acoustic observations of bubble clouds under breaking wind waves in the sea made by Thorpe (1986, 1992). It is inferred that DBBL is formed in equilibrium with the local wind waves, as a common feature from initially generated wind waves, young laboratory wind waves to mature wind waves in the sea. 相似文献
35.
Yoshiaki Toba 《Journal of Oceanography》1989,45(5):350-359
I feel greatly honoured to be awarded the Oceanographical Society of Japan Prize for 1989, and to be given this opportunity to look back at my past activities in research and education, and to present them as an example for younger members of our Society. Taking this opportunity, I acknowledge with sincere thanks many persons who guided me or who have collaborated with me since I was a young student up to the present.My past academic history may be divided into three periods. In the first period (1955–71) at Kyoto University which included and eighteen month visit to the University of Chicago, I studied the production of air bubbles and droplets at the sea surface by wind-wave breaking, and the supply and distribution of the sea-salt particles from the sea to the atmosphere. The first nondimensional formulation of the form of single air bubbles floating at liquid surfaces was also presented. In the second period (1971–1981) I pursued, at the new Physical Oceanography Laboratory of Tohoku University, the concept of wind waves which are coupled with the wind. I proposed the 3/2-power law of wind waves and the high frequency part of the wind-wave spectral form which is proportional to the friction velocity of air and to the –4th power of frequency. Detailed investigations of wind-wave phenomena were also performed in wind-wave tunnels by introducing quantitative flow visualization techniques and together with my students, we elucidated ordered motions in the flows below and above wind waves. The Tohoku Wave Model was also developed in which the similarity laws of wind waves, which are strongly coupled with the air flow, were explicitly used. In the third period (1982-present), my area of interest has become broader and, togerther with my students and my overseas collaboratos, we are studying the connection of local physical processes at the air-sea boundary with studies of larger scale ocean-atmosphere interactions. One aspect of this has led to the organization of the Ocean Mixed Layer Experiment (OMLET, 1987–91), as part of the Japanese national programmes of the World Climate Research Programme. Another interest is the ongoing fundamental study of the use of satellite data for the estimation of air-sea fluxes over a broad area. Pursuit of the roots of the similarity laws of the windsea remains one of my present tasks. 相似文献
36.
Statistical study on the local equilibrium between wind and wind waves by using data from ocean data buoy stations 总被引:6,自引:0,他引:6
The local equilibrium between the wind and wind waves, which is defined by a range of the coefficient of the 3/2-power law between the non-dimensional significant wave height and period, is statistically investigated by using wind and wave data obtained at four ocean data buoy stations in the seas near Japan. The friction velocity is calculated from the wind speed measured at one height together with the significant wave period by using formulas of the wave dependent drag coefficient proposed by Tobaet al. (1990). The data for small waves or for weak winds indicate that the waves do not satisfy the criterion for the local equilibrium, because they may be affected by changing winds or remotely generated swells. In the seas near Japan, the data which satisfy the local equilibrium are about 6% through a year. Otherwise swells are dominant in most situations. Changing winds also cause deviations from the local equilibrium. The degree of satisfaction of the local equilibrium can be classified by ranges of the significant wave height. As the significant wave height exceeds 4 m, the local equilibrium is more frequently satisfied. 相似文献
37.
The microwave backscattering from wind-wave surfaces is observed in a windwave tunnel under various conditions of the wind and wind waves, and its statistical features are investigated. The dependence of the backscattered power on the wind speed and the incident angle shows similar features to those predicted by models proposed previously. However, the dependence of the backscattered power on the incident angles also corresponds to the asymmetrical feature of the wind-wave surfaces with respect to the wind direction. The spectral analyses of time series of the backscattered intensity show that the propagating speed of fine structures of the wind-wave surface contributing to the backscattering at large incident angles does not coincide with the phase speed of the freely propagating Braggwaves. Atupwind incidence, the surface structures of wind waves contributing to the backscattering propagates with the dominant waves at their phase speed. This result is inconsistent with the two-scale model in which the Bragg waves are simply superimposed on longer waves, but is consistent with the results of optical observation by Ebuchiet al. (1987). At downwind incidence, the propagating speed is slower than the phase speed of the dominant waves. 相似文献
38.
Eisuke Fujita Tomofumi Kozono Hideki Ueda Yuhki Kohno Shoichi Yoshioka Norio Toda Aiko Kikuchi Yoshiaki Ida 《Bulletin of Volcanology》2013,75(1):1-14
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes. 相似文献
39.
Adjustment of Wind Waves to Sudden Changes of Wind Speed 总被引:1,自引:0,他引:1
An experiment was conducted in a small wind-wave facility at the Ocean Engineering Laboratory, California, to address the following question: when the wind speed changes rapidly, how quickly and in what manner do the short wind waves respond? To answer this question we have produced a very rapid change in wind speed between U low (4.6 m s?1) and U high (7.1 m s?1). Water surface elevation and air turbulence were monitored up to a fetch of 5.5 m. The cycle of increasing and decreasing wind speed was repeated 20 times to assure statistical accuracy in the measurement by taking an ensemble mean. In this way, we were able to study in detail the processes by which the young laboratory wind waves adjust to wind speed perturbations. We found that the wind-wave response occurs over two time scales determined by local equilibrium adjustment and fetch adjustment, Δt 1/T = O(10) and Δt 2/T = O(100), respectively, in the current tank. The steady state is characterized by a constant non-dimensional wave height (H/gT 2 or equivalently, the wave steepness for linear gravity waves) depending on wind speed. This equilibrium state was found in our non-steady experiments to apply at all fetches, even during the long transition to steady state, but only after a short initial relaxation Δt 1/T of O(10) following a sudden change in wind speed. The complete transition to the new steady state takes much longer, Δt 2/T of O(100) at the largest fetch, during which time energy propagates over the entire fetch along the rays (dx/dt = c g) and grows under the influence of wind pumping. At the same time, frequency downshifts. Although the current study is limited in scale variations, we believe that the suggestion that the two adjustment time scales are related to local equilibrium adjustment and fetch adjustment is also applicable to the ocean. 相似文献
40.
We propose a new analytical algorithm for the estimation of wind speeds from altimeter data using the mean square slope of
the ocean surface, which is obtained by integration of a widely accepted wind-wave spectrum including the gravity-capillary
wave range. It indicates that the normalized radar cross section depends not only on the wind speed but also on the wave age.
The wave state effect on the altimeter radar return becomes remarkable with increasing wind speed and cannot be neglected
at high wind speeds. A relationship between wave age and nondimensional wave height based on buoy observational data is applied
to compute the wave age using the significant wave height of ocean waves, which could be simultaneously obtained from altimeter
data. Comparison with actual data shows that this new algorithm produces more reliable wind speeds than do empirical algorithms.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献