During the self-weight penetration process of the suction foundation on the dense sand seabed, due to the shallow penetration depth, the excess seepage seawater from the outside to the inside of the foundation may cause the negative pressure penetration process failure. Increasing the self-weight penetration depth has become an important problem for the safe construction of the suction foundation. The new suction anchor foundation has been proposed, and the self-weight penetration characteristics of the traditional suction foundation and the new suction anchor foundation are studied and compared through laboratory experiments and analysis. For the above two foundation types, by considering five foundation diameters and two bottom shapes, 20 models are tested with the same penetration energy. The effects of different foundation diameters on the penetration depth, the soil plug characteristics, and the surrounding sand layer are studied. The results show that the penetration depth of the new suction foundation is smaller than that of the traditional suction foundation. With the same penetration energy, the penetration depth of the suction foundation becomes shallower as the diameter increases. The smaller the diameter of the suction foundation, the more likely it is to be fully plugged, and the smaller the height of the soil plug will be. In the stage of self-weight penetration, the impact cavity appears around the foundation, which may affect the stability of the suction foundation.
Hypoxia is increasingly reported off the Changjiang River Estuary with the confluence of multiple high volume nutrient sources. The Regional Ocean Modeling System coupled with a biological model was used to analyze the effect of different nutrient sources on the development of hypoxia off the Changjiang River Estuary. By comparing to observed data, our model suitably captured the regional dynamics of chlorophyll a, dissolved oxygen, and nutrient concentration. A series of sensitivity experiments were conducted to investigate the hypoxia response to the various nutrient sources, such as loading from the Changjiang River, Kuroshio and Taiwan Warm Current. Our model results indicated that nutrients from different sources significantly influenced the hypoxia off the Changjiang River Estuary, and it was mostly affected by nutrients sourced from the Kuroshio. The nutrients input from the Changjiang River had larger impacts on the hypoxia in the north of 30°N than that in the south of 30°N. The nutrients sourced from the Taiwan Strait had a least influence on the hypoxia off the Changjiang River Estuary. 相似文献
We introduced the Coupled Model Intercomparison Project Phase 6 (CMIP6) Ocean Model Intercomparison Project CORE2-forced (OMIP-1) experiment by using the First Institute of Oceanography Earth System Model version 2.0 (FIO-ESM v2.0), and comprehensively evaluated the simulation results. Unlike other OMIP models, FIO-ESM v2.0 includes a coupled ocean surface wave component model that takes into account non-breaking surface wave-induced vertical mixing in the ocean and effect of surface wave Stokes drift on air-sea momentum and heat fluxes in the climate system. A sub-layer sea surface temperature (SST) diurnal cycle parameterization was also employed to take into account effect of SST diurnal cycle on air-sea heat ?uxes to improve simulations of air-sea interactions. Evaluations show that mean values and long-term trends of significant wave height were adequately reproduced in the FIO-ESM v2.0 OMIP-1 simulations, and there is a reasonable fit between the SST diurnal cycle obtained from in situ observations and that parameterized by FIO-ESM v2.0. Evaluations of model drift, temperature, salinity, mixed layer depth, and the Atlantic Meridional Overturning Circulation show that the model performs well in the FIO-ESM v2.0 OMIP-1 simulation. However, the summer sea ice extent of the Arctic and Antarctic is underestimated. 相似文献
This paper documents a new method for describing channel-related sedimentary deposits based on formal language theory. Using this method an analogue model of a sedimentary deposit can be encoded as a grammar. A program, called a parser, has been developed which can generate stochastic maps of these sedimentary deposits based on information in a specified grammar. The maps of sedimentary deposits generated by the parser have the same type, spatial arrangement, shape and size distribution as the analogue model. The successful generation of depositional maps represents a crucial step in the ongoing development of a new technique designed to generate 3D static geological models of sedimentary successions. The maps can be conditioned to match sparse hard data in the form of channel segments interpreted from seismic horizon maps. 相似文献
This paper presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely: (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment.The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, the model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope. 相似文献
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged 1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget. 相似文献
Coastal hazards are in the interface of human activities with natural coastal processes. The conflicts arising from this relationship require new approaches suitable for coastal management that consider the dynamic of coastal areas. A method to assess hazard in rock cliffs is presented, combining cliff evolution forcing mechanisms along with protection factors, according to a weighted factors system. This method provides a rapid evaluation of vulnerability for cliffed areas, supporting coastal management and hazard mitigation. The method was applied to the rocky cliffs of the densely populated coastal zone between Galé and Olhos de Água (Southern Portugal), where high and very high hazard values were found to be dominant. A method validation was made using the vulnerability areas and the recorded mass movements over a 45 year period in the same area. 相似文献