首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   7篇
  国内免费   4篇
测绘学   14篇
大气科学   32篇
地球物理   103篇
地质学   128篇
海洋学   50篇
天文学   22篇
综合类   1篇
自然地理   26篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   1篇
  2019年   14篇
  2018年   17篇
  2017年   13篇
  2016年   14篇
  2015年   10篇
  2014年   18篇
  2013年   23篇
  2012年   29篇
  2011年   29篇
  2010年   26篇
  2009年   26篇
  2008年   24篇
  2007年   15篇
  2006年   19篇
  2005年   17篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
排序方式: 共有376条查询结果,搜索用时 7 毫秒
371.
Reliable thermodynamic models assessing the interaction of radionuclides with cementitious materials are important in connection with long-term predictions of the safe disposal of radioactive waste in cement-based repositories. In this study, a geochemical model of U(VI) interaction with calcium silicate hydrates (C–S–H phases), the main component of hardened cement paste (HCP), has been developed. Uranium(VI) sorption isotherms on C–S–H phases of different Ca:Si ratios (C:S) and structural data from spectroscopic studies provided the indispensable set of experimental data required for the model development. This information suggested that U(VI) is neither adsorbed nor incorporated in the Ca–O octahedral layers of the C–S–H structure, but rather is located in the interlayer, similar to Ca2+ and other cations. With a view to the high recrystallisation rates and the cryptocrystalline ‘gel-like’ structure of the C–S–H phases, these observations indicated a U(VI) uptake driven by the formation of a solid solution.  相似文献   
372.
The influence of ablation cell geometry (Frames single‐ and HelEx two‐volume cells) and laser wavelength (198 and 266 nm) on aerosols produced by femtosecond laser ablation (fs‐LA) were evaluated. Morphologies, iron mass distribution (IMD) and 56Fe/54Fe ratios of particles generated from magnetite, pyrite, haematite and siderite were studied. The following two morphologies were identified: spherules (10–200 nm) and agglomerates (5–10 nm). Similarity in IMD and ablation rate at 198 and 266 nm indicates similar ablation mechanisms. 56Fe/54Fe ratios increased with aerodynamic particle size as a result of kinetic fractionation during laser plasma plume expansion, cooling and aerosol condensation. The HelEx cell produces smaller particles with a larger range of 56Fe/54Fe ratios (1.85‰) than particles from the Frames cell (1.16‰), but the bulk aerosol matches the bulk substrate for both cells, demonstrating stoichiometric fs‐LA sampling. IMD differences are the result of faster wash out of the HelEx cell allowing less time for agglomeration of small, low‐δ 56Fe particles with larger, high‐δ 56Fe particles in the cell. Even with a shorter ablation time, half the total Fe ion intensity, and half the ablation volume, the HelEx cell produced Fe isotope determinations for magnetite that were as precise as the Frames cell, even when the latter included an aerosol‐homogenising mixing chamber. The HelEx cell delivered a more constant stream of small particles to the ICP, producing a more stable Fe ion signal (0.7% vs. 1.5% RSE for 56Fe in a forty‐cycle single analysis), constant instrumental mass bias and thus a more precise measurement.  相似文献   
373.
Ore deposits are usually composed of rock units or facies with different grade distributions and complex spatial structures. Being able to simulate the spatial layout of these facies are essential to have a comprehensive mining plan and an accurate resources and reserves evaluation. Modelers are faced with a set of challenges when creating the facies model such as: reproducing the facies proportions and spatial continuity as well as the topological contacts between facies, capturing post depositional overprinting, and honoring the data obtained from drill holes. Plurigaussian simulation (PGS) is a geostatistical approach that allows covering these challenges. This study addresses the application of PGS to Sungun porphyry copper deposit (Iran), in order to simulate the layout of three facies: mineralized porphyry and skarn and non-mineralized dykes. The aim of this study is to construct numerical models in which the dyke structures reflect the evolution observed in the geology.  相似文献   
374.
The Puigseslloses megalith tomb (Barcelona, Spain) is located on the summit of a hill in the Vic Plain where the sedimentary rocks that were used in its construction do not crop out. A sedimentological and petrological characterization of the monument's slabs and a multidisciplinary analysis of the outcropping materials in nearby areas has allowed the identification of three possible source areas associated with the Paleogene Banyoles Marls Formation and the Folgueroles Sandstone Formation and allows us to propose possible routes by which the slabs were transported from the catchment site to the place where the monument was built. In addition, the lithology and position of different slabs within the megalith denote the intention to separate the chamber from the corridor by using different types of slab. The position of the monument also reveals that tomb location was more of a priority than proximity to the slab sources. © 2010 Wiley Periodicals, Inc.  相似文献   
375.
In oxide copper deposits, the acid soluble copper represents the fraction of total copper recoverable by heap leaching. Two difficulties often complicate the joint modeling and simulation of total and soluble copper grades: the inequality constraint linking both grade variables and the sampling design for soluble copper grade, which may be preferential and cause biases in sample statistics. A methodology is presented in order to accurately estimate the total and soluble copper grade bivariate distribution, based on an explicit modeling of the conditional distributions of soluble copper grade. Co-simulation is then realized by converting the copper grades into Gaussian random fields, through stepwise conditional transformation, and by fitting a coregionalization model while accounting for the preferential sampling design. The proposed approach is illustrated through an application to an ore deposit located in northern Chile.  相似文献   
376.
The geochemical characteristics of trace metals (As, Cr, Co, Cd, Cu, Mn, Ni, Pb, V and Zn) in PM10 in Wuhan, the biggest metropolitan in central China, as well as their sources and contributions were analyzed. As PM10 has been the principal contaminant of air in Wuhan for years, concentrations of trace metals were measured in PM10 using high-volume samplers at one urban (Hankou) and one industrial (Changqian) site in Wuhan between September 2003 and September 2004. Based on the results, PM10 in Wuhan is characterized by relatively high levels of As, Cd, Mn, Pb and Zn compared with other Asian cities. The time-series of these elements indicated that As, Cu and Zn at both sites have similar trends, whereas Pb levels showed different patterns due to different emission sources. Factor analysis was applied to the datasets focusing on the apportionment of the mass of selected trace metals. Results indicate that Pb, Cd and As have a common source (smelting) at both sites, whereas the sources of Ni vary from coal combustion and steel in Changqian to mineral and traffic in Hankou.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号