首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   12篇
  国内免费   1篇
测绘学   1篇
大气科学   19篇
地球物理   51篇
地质学   44篇
海洋学   4篇
天文学   8篇
自然地理   7篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   5篇
  2013年   11篇
  2012年   4篇
  2011年   7篇
  2010年   12篇
  2009年   10篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1988年   1篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
21.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   
22.
Landscape evolution models (LEMs) are an increasingly popular resource for geomorphologists as they can operate as virtual laboratories where the implications of hypotheses about processes over human to geological timescales can be visualized at spatial scales from catchments to mountain ranges. Hypothetical studies for idealized landscapes have dominated, although model testing in real landscapes has also been undertaken. So far however, numerical landscape evolution models have rarely been used to aid field‐based reconstructions of the geomorphic evolution of actual landscapes. To help make this use more common, we review numerical landscape evolution models from the point of view of model use in field reconstruction studies. We first give a broad overview of the main assumptions and choices made in many LEMs to help prospective users select models appropriate to their field situation. We then summarize for various timescales which data are typically available and which models are appropriate. Finally, we provide guidance on how to set up a model study as a function of available data and the type of research question. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
23.
Predicted climate change and the associated sea level rise poses an increased threat of flooding due to wave overtopping events at sea and river dikes. To safeguard the land from flooding it is important to keep the soil erosion resistance at the dikes high. As plant roots can be very effective in reducing soil erosion rates by concentrated flow, the main goal of this study is to explore the variability in root system characteristics of five dike vegetation communities along the Scheldt River (Belgium) and to assess their effectiveness in controlling soil erosion rates during concentrated flow. This study is the first one to investigate systematically the erosion‐reducing potential of the root properties of representative dike vegetation communities in a temperate humid climate. Results show that the presence of Urtica dioica resulted in large differences in root length density (RLD) among dike vegetation communities. Observed RLD values in the topsoil ranged from 129 to 235 km m‐3 for dike vegetation communities without U. dioica, while smaller values ranging from 22 to 58 km m?3 were found for vegetation communities with U. dioica. The erosion‐reducing effect of the dike vegetation communities was estimated based on a global Hill curve model, linking the RLD to the soil detachment ratio (SDR; i.e. the ratio of the soil detachment rate for root‐permeated topsoils to the soil detachment rate for root‐free topsoils). Concentrated flow erosion rates are likely to be reduced to 13–16% of the erosion rates for root‐free topsoils if U. dioica is absent compared to 22–30% for vegetation communities with U. dioica. Hence, to maintain a high resistance of the soil against concentrated flow erosion it is important to avoid the overgrowth of grassland by U. dioica through an effective vegetation management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
24.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
25.
Abstract

The collocation technique has become a popular tool in oceanography and hydrology for estimating the error variances of different data sources such as in situ sensors, models and remote sensing products. It is also possible to determine calibration constants, for example to account for an off-set between the data sources. So far, the temporal autocorrelation structure of the errors has not been studied, although it is known that it has detrimental effects on the results of the collocation technique, in particular when calibration constants are also determined. This paper shows how the (triple) collocation estimators can be adapted to retrieve the autocovariance functions; the statistical properties as well as the structural deficencies are described. The coupling between the autocorrelation of the error and the estimation of calibration constants is studied in detail, due to its importance for analysing temporal changes. In soil moisture applications, such time variations can be induced, for example, by seasonal changes in the vegetation cover, which affect both models and remote sensing products. The limitations of the proposed technique associated with these considerations are analysed using remote sensing and in situ soil moisture data. The variability of the inter-sensor calibration and the autocovariance are shown to be closely related to temporal patterns of the data.

Editor D. Koutsoyiannis

Citation Zwieback, S., Dorigo, W., and Wagner, W., 2013. Estimation of the temporal autocorrelation structure by the collocation technique with an emphasis on soil moisture studies. Hydrological Sciences Journal, 58 (8), 1729–1747.  相似文献   
26.
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA’s small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA’s In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.  相似文献   
27.
Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity.It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate.The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity.  相似文献   
28.
A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.  相似文献   
29.
In Malawi, fishing community user groups known as beach village committees, traditional chiefs, government officers, and fishers are the key players in fisheries management. Fish catch trends at the Elephant Marsh Fishery in southern Malawi are declining. Based on interviews and participant observation, this article uses an actor-based framework (known as Action-in-Context) to unveil the issues that are crucial in devising a sustainable governance system for the fishery. We establish and propose that the key social variables for the design of a three-pillared (locally based, weak, and amorphous) resilient institution for sustainability of the Elephant Marsh Fishery are (i) the social reputation of the leaders of local fishery institutions (beach village committee leaders), and (ii) the power dynamics between traditional chiefs and these local fishery leaders. We end the article by exploring the implications of the findings on the sustainability of the fishery under rising resource pressure.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号