首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3382篇
  免费   100篇
  国内免费   101篇
测绘学   74篇
大气科学   404篇
地球物理   846篇
地质学   1056篇
海洋学   682篇
天文学   305篇
综合类   51篇
自然地理   165篇
  2023年   12篇
  2022年   25篇
  2021年   51篇
  2020年   48篇
  2019年   73篇
  2018年   140篇
  2017年   131篇
  2016年   152篇
  2015年   92篇
  2014年   180篇
  2013年   226篇
  2012年   145篇
  2011年   213篇
  2010年   197篇
  2009年   193篇
  2008年   168篇
  2007年   181篇
  2006年   156篇
  2005年   128篇
  2004年   108篇
  2003年   97篇
  2002年   99篇
  2001年   77篇
  2000年   81篇
  1999年   55篇
  1998年   46篇
  1997年   42篇
  1996年   25篇
  1995年   37篇
  1994年   20篇
  1993年   17篇
  1992年   22篇
  1991年   18篇
  1990年   19篇
  1989年   13篇
  1988年   14篇
  1987年   26篇
  1986年   17篇
  1985年   16篇
  1984年   28篇
  1983年   32篇
  1982年   22篇
  1981年   17篇
  1980年   25篇
  1979年   12篇
  1978年   7篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3583条查询结果,搜索用时 0 毫秒
41.
The vegetated urban canopy model (VUCM) is implemented in a meteorological model, the Regional Atmospheric Modeling System (RAMS), for urban atmospheric modeling. The VUCM includes various urban physical processes such as in-canyon radiative transfer, turbulent energy exchanges, substrate heat conduction, and in-canyon momentum drag. The coupled model RAMS/VUCM is evaluated and then used to examine its impacts on the dynamic and thermodynamic structure of the urban boundary layer (UBL) in the Seoul metropolitan area. The spatial pattern of the nocturnal urban heat island (UHI) in Seoul is quite well simulated by the RAMS/VUCM. A statistical evaluation of 2-m air temperature reveals a significant improvement in model performance, especially in the nighttime. The RAMS/VUCM simulates the diurnal variations of surface energy balance fluxes realistically. This contributes to a reasonable UBL formation. A weakly unstable UBL is formed in the nighttime with UBL heights of about 100–200 m. When urban surfaces are represented in the RAMS using a land surface model of the Land Ecosystem-Atmosphere Feedback (LEAF), the RAMS/LEAF produces strong cold biases and thus fails to simulate UHI formation. This is due to the poor representation or absence of important urban physical processes in the RAMS/LEAF. This study implies that urban physical processes should be included in numerical models in order to reasonably simulate meteorology and air quality in urban areas and that the VUCM is one of the promising urban canopy models.  相似文献   
42.
Mass and energy fluxes between the atmosphere and vegetation are driven by meteorological variables, and controlled by plant water status, which may change more markedly diurnally than soil water. We tested the hypothesis that integration of dynamic changes in leaf water potential may improve the simulation of CO2 and water fluxes over a wheat canopy. Simulation of leaf water potential was integrated into a comprehensive model (the ChinaAgrosys) of heat, water and CO2 fluxes and crop growth. Photosynthesis from individual leaves was integrated to the canopy by taking into consideration the attenuation of radiation when penetrating the canopy. Transpiration was calculated with the Shuttleworth-Wallace model in which canopy resistance was taken as a link between energy balance and physiological regulation. A revised version of the Ball-Woodrow-Berry stomatal model was applied to produce a new canopy resistance model, which was validated against measured CO2 and water vapour fluxes over winter wheat fields in Yucheng (36°57′ N, 116°36′ E, 28 m above sea level) in the North China Plain during 1997, 2001 and 2004. Leaf water potential played an important role in causing stomatal conductance to fall at midday, which caused diurnal changes in photosynthesis and transpiration. Changes in soil water potential were less important. Inclusion of the dynamics of leaf water potential can improve the precision of the simulation of CO2 and water vapour fluxes, especially in the afternoon under water stress conditions.  相似文献   
43.
Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m?2 (3.87 kWh m?2). These results show a difference of approximately ± 70 MJ m?2 (± 0.05 kWh m?2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.  相似文献   
44.
A monotonic transport algorithm for a high-order time integration scheme is described in this paper. The algorithm is a modified version of an existing high-order time integration scheme, and is tested using a simple one-dimensional pulse and two-dimensional deformational flows. It is found that the new formulation can remove the error, caused by new maxima/minima and excessive smoothing, which occurs in scalar transport using the original extrapolation scheme. The results show that there may be potential for the high-order time integration scheme to be applied in numerical weather prediction models.  相似文献   
45.
In this study, Raupach's localized near-field (LNF)theory is combined with appropriate parameterizations ofthe turbulence inside a canopy to investigate how airstability and source configuration influence the fluxfootprint and flux adjustment with fetch in theroughness sublayer. The model equations are solvednumerically. The flux footprint from the LNF predictionis in general more contracted than the prediction basedon the inertial sublayer similarity functions. Invery unstable conditions, the near-field effect causes thefootprint of the elevated canopy source to locatefurther upwind than that of the ground-level source, andthe combined footprint can become negative in situationswhere the two sources are of opposite sign. The fluxfootprint and flux adjustment with fetch in theroughness sublayer are sensitive to source configurationand the parameters specifying wind speed and theLagrangian time scale inside the canopy.  相似文献   
46.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   
47.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
48.
The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.  相似文献   
49.
Hard red winter wheat (Triticum aestivum L.) is a major crop in the Great Plains region of the U.S. The goal of this assessment effort was to investigate the influence of two contrasting global climate change projections (U.K. Hadley Center for Climate Prediction and Research and Canadian Centre for Climate Modelling and Analysis) on the yield and percent kernel nitrogen content of winter wheat at three locations in Nebraska. These three locations represent sub-humid and semi arid areas and the transition between these areas and are also representative of major portions of the winter wheat growing areas of the central Great Plains. Climate scenarios based on each of the projections for each location were developed using the LARS-WG weather generator along with data from automated weather stations. CERES-Wheat was used to simulate the responses for two contrasting cultivars of wheat using two sowing dates. The first sowing date represented current sowing dates appropriate for each location. The second sowing date was later and represents the approximate date when the mean air temperature from the climate scenarios is the same as the mean air temperature from the actual climate data at the current sowing dates. The yield and percent kernel nitrogen content using the two climate scenarios generally decrease going from the sub-humid eastern to the semi arid western parts of Nebraska. Results from these simulations indicate that yield and percent kernel nitrogen content using the two climate scenarios could not both be maintained at levels currently simulated. Protein content (directly related to kernel nitrogen content) and end-use quality are the primary determinants for the use of hard red winter wheat in baked goods. Nitrogen management and new cultivars, which can enhance the uptake and translocation of nitrogen, will be proactive steps to meet the challenges of global climate change as represented by these climate scenarios.  相似文献   
50.
The regional distribution of perceived temperatures (PT) for 28 major weather stations in South Korea during the past 22 years (1983–2004) was investigated by employing a human heat budget model, the Klima-Michel model. The frequencies of a cold stress and a heat load by each region were compared. The sensitivity of PT in terms of the input of synoptic meteorological variables were successfully tested. Seogwipo in Jeju Island appears to be the most comfortable city in Korea. Busan also shows a high frequenc...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号