Parasitic programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. We describe a microprocessor-based automated SETI acquisition system which searches for and records spectra of narrowband signals in the IF band of an observatory receiver. Data taken with this system over 35 days at the Hat Creek Radio Observatory at 1612 MHz are discussed. Out of approximately 105 spectra processed during this period, 4000 were identified by the system as containing narrowband signals and were recorded. Subsequent analysis indicates that over 3900 of these are due to local RF contamination. The remainder are undergoing further investigation. 相似文献
Human-driven changes in the global environment pose an increasingly urgent challenge for the management of ecosystems that is made all the more difficult by the uncertain future of both environmental conditions and ecological responses. Land managers need strategies to increase regional adaptive capacity, but relevant and rapid assessment approaches are lacking. To address this need, we developed a method to assess regional protected area networks across biophysically important climatic gradients often linked to biodiversity and ecosystem function. We plot the land of the southwestern United States across axes of historical climate space, and identify landscapes that may serve as strategic additions to current protected area portfolios. Considering climate space is straightforward, and it can be applied using a variety of relevant climate parameters across differing levels of land protection status. The resulting maps identify lands that are climatically distinct from existing protected areas, and may be utilized in combination with other ecological and socio-economic information essential to collaborative landscape-scale decision-making. Alongside other strategies intended to protect species of special concern, natural resources, and other ecosystem services, the methods presented herein provide another important hedging strategy intended to increase the adaptive capacity of protected area networks. 相似文献
The method of making quantitative assessments of mineral resources sufficiently detailed for economic analysis is outlined in three steps. The steps are (1) determination of types of deposits that may be present in an area, (2) estimation of the numbers of deposits of the permissible deposit types, and (3) combination by Monte Carlo simulation of the estimated numbers of deposits with the historical grades and tonnages of these deposits to produce a probability distribution of the quantities of contained metal.Two examples of the estimation of the number of deposits (step 2) are given. The first example is for mercury deposits in southwestern Alaska and the second is for lode tin deposits in the Seward Peninsula.The flow of the Monte Carlo simulation program is presented with particular attention to the dependencies between grades and tonnages of deposits and between grades of different metals in the same deposit. 相似文献
Igneous and sedimentary rocks recently dredged and cored from the steep western slope of the Beata Ridge provide important data on the composition, age and details of crustal evolution of the rock-types responsible for recorded compressional wave velocities. The sedimentary rock samples also provide new data concerning the age and depositional environment of overlying sedimentary reflectors.
The deepest (4,100 m) dredge haul contains deeply weathered coarsegrained igneous rocks. Nine other hauls, distributed between 4,000–2,300 m, contain holocrystalline basalts and diabases. The compressional wave velocity of air-dried samples of two holocrystalline basalts and a diabase at atmospheric pressure ranges from 5.0–5.6 km/sec. Sampling in depths less than 2,300 m shows that the crest of the Beata Ridge is capped by Quaternary deposits underlain by consolidated carbonate sediment of at least Middle Eocene age. The faunal assemblages of the Mid-Eocene samples are the product of normal accumulation in a shallow shelf environment.
The dredging results coupled with previously published seismic reflection and refraction data, suggest that the 5.4–5.7 km/sec crust is composed of a layer of basalt and diabase which outcrops below 2,300 m, on a fault-generated escarpment that was produced in the Late Cretaceous-Early Tertiary. The shallow shelf samples of Eocene age indicate that the Beata Ridge was higher in the Early Tertiary and has subsided subsequently to its present depth. 相似文献
The Novaya Zemlya fold‐and‐thrust‐belt is the northern continuation of the late Palaeozoic Uralide Orogen. Little is known about its deeper structure and the basement history of the adjacent Barents and Kara shelves. Based on geological evidence and detrital zircon analysis of 28 samples from the northeastern and stratigraphically deepest part of the archipelago, we demonstrate that Cambro‐Ordovician turbidite‐dominated deposition was almost exclusively sourced from rocks consolidated during the Timanian orogeny (Timanian basement). A profound change in provenance occurred near the end of the Ordovician. Over 90% of the zircons from Silurian and about 80% from Devonian strata have ages characteristic of the Sveconorwegian Orogen, implying uplift of these rocks in the vicinity of Novaya Zemlya. The presence of Sveconorwegian and Grenvillian rocks in the high Arctic suggests revision of recent reconstructions of the Rodinia supercontinent, its break‐up and subsequent Caledonian orogeny. 相似文献
We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km2 (90% CE: 5.1 km2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40° epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km2 (90% CE: 438 km2), and the other two covering 1730 and 8869 km2 (90% CE: 1331 and 6822 km2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km2 for all events having more than three observations. 相似文献
Abstract The term ‘‘solitary wave'’ is usually used to denote a steadily propagating permanent form solution of a nonlinear wave equation, with the permanency arising from a balance between steepening and dispersive tendencies. It is known that large-scale thermal anomalies in the ocean are subject to a steepening mechanism driven by the beta effect, while at the smaller deformation scale, such phenomena are highly dispersive. It is shown here that the evolution of a physical system subject to both effects is governed by the ‘‘frontal semi-geostrophic equation'’ (FSGE), which is valid for large amplitude thermocline disturbances. Solitary wave solutions of the FSGE (here named planetons) are calculated and their properties are described with a view towards examining the behavior of finite amplitude solitary waves. In contrast, most known solitary wave solutions belong to weakly nonlinear wave equations (e.g., the Korteweg—deVries (KdV) equation). The FSGE is shown to reduce to the KdV equation at small amplitudes. Classical sech2 solitons thus represent a limiting class of solutions to the FSGE. The primary new effect on planetons at finite amplitudes is nonlinear dispersion. It is argued that due to this effect the propagation rates of finite amplitude planetons differ significantly from the ‘‘weak planeton'', or KdV, dispersion relation. Planeton structure is found to be simple and reminiscent of KdV solitons. Numerical evidence is presented which suggests that collisions between finite amplitude solitary waves are weakly inelastic, indicating the loss of true soliton behavior of the FSGE at moderate amplitudes. Lastly, the sensitivity of solitary waves to the existence of a nontrivial far field is demonstrated and the role of this analysis in the interpretation of lab experiments and the evolution of the thermocline is discussed. 相似文献
Testing the theoretical notion that differences in entrepreneurial skill can enhance the viability of a poor location or detract from the qualities of a good location, this study reviews the historical experience of a number of retailing establishments operated by different firms at the same sites. The ultimate success of stores that had done poorly under previous management tends to confirm that a location is “good'’only so long as the retailer employs effective merchandising and operating policies. 相似文献
The purpose of this study was to examine the distribution, abundance and characteristics of plastic particles in plankton samples collected routinely in Northeast Pacific ecosystems, and to contribute to the development of ideas for future research into the occurrence and impact of small plastic debris in marine pelagic ecosystems. Plastic debris particles were assessed from zooplankton samples collected as part of the National Oceanic and Atmospheric Administration's (NOAA) ongoing ecosystem surveys during two research cruises in the Southeast Bering Sea in the spring and fall of 2006 and four research cruises off the U.S. west coast (primarily off southern California) in spring, summer and fall of 2006, and in January of 2007. Nets with 0.505 mm mesh were used to collect surface samples during all cruises, and sub-surface samples during the four cruises off the west coast. The 595 plankton samples processed indicate that plastic particles are widely distributed in surface waters. The proportion of surface samples from each cruise that contained particles of plastic ranged from 8.75 to 84.0%, whereas particles were recorded in sub-surface samples from only one cruise (in 28.2% of the January 2007 samples). Spatial and temporal variability was apparent in the abundance and distribution of the plastic particles and mean standardized quantities varied among cruises with ranges of 0.004-0.19 particles/m3, and 0.014-0.209 mg dry mass/m3. Off southern California, quantities for the winter cruise were significantly higher, and for the spring cruise significantly lower than for the summer and fall surveys (surface data). Differences between surface particle concentrations and mass for the Bering Sea and California coast surveys were significant for pair-wise comparisons of the spring but not the fall cruises. The particles were assigned to three plastic product types: product fragments, fishing net and line fibers, and industrial pellets; and five size categories: <1 mm, 1-2.5 mm, >2.5-5 mm, >5-10 mm, and >10 mm. Product fragments accounted for the majority of the particles, and most were less than 2.5 mm in size. The ubiquity of such particles in the survey areas and predominance of sizes <2.5 mm implies persistence in these pelagic ecosystems as a result of continuous breakdown from larger plastic debris fragments, and widespread distribution by ocean currents. Detailed investigations of the trophic ecology of individual zooplankton species, and their encounter rates with various size ranges of plastic particles in the marine pelagic environment, are required in order to understand the potential for ingestion of such debris particles by these organisms. Ongoing plankton sampling programs by marine research institutes in large marine ecosystems are good potential sources of data for continued assessment of the abundance, distribution and potential impact of small plastic debris in productive coastal pelagic zones. 相似文献
Intracellular partitioning of trace metals is critical to metal tolerance in aquatic organisms and may also influence metal trophic transfer in ecosystems. In this study, we tested the relevance of metal (Cd, Cu, Pb, and Zn) intracellular partitioning in prey as an indicator of metal trophic availability to benthic forage fish, mummichogs (Fundulus heteroclitus), in chronically metal-polluted salt marshes in New York, USA. Two common prey of mummichogs in the study area, Palaemonetes pugio and Nereis acuminata, generally stored increasingly higher proportions of non-essential metals (particularly Pb) in insoluble (less trophically available) cellular components, as the whole body burdens increased. In contrast, intracellular partitioning of essential metals (Cu and Zn) in invertebrate prey varied relatively little among sites. Differential Cd and Pb intracellular partitioning patterns within P. pugio among sites were significantly associated with Cd and Pb whole body burdens in mummichogs, respectively (i.e., prey-driven bioreduction of metals), while bioaccumulation of Cu and Zn in mummichogs was similar among populations. The findings in this study suggest that metal intracellular partitioning within prey may be partially responsible for metal trophic availability to a predator in metal-polluted habitats, while there was also evidence that some predator-dependent processes may offset differential trophic availabilities from prey. 相似文献