首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   3篇
  国内免费   1篇
测绘学   4篇
大气科学   10篇
地球物理   28篇
地质学   54篇
海洋学   13篇
天文学   6篇
综合类   1篇
自然地理   22篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   11篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1997年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
81.
The 1959 summit eruption of Kīlauea volcano produced the highest recorded Hawaiian fountain in Hawai‘i. Quantitative analysis of closely spaced samples from the final two high-fountaining episodes of the eruption result in a fine-scale textural study of pyroclasts and provide a record of postfragmentation processes. As clast vesicularity increases, the vesicle number density decreases and vesicle morphology shifts from small and round to larger and more irregular. The shift in microtexture corresponds to greater degrees of postfragmentation expansion of clasts with higher vesicularity. We suggest the range of clast morphologies in the deposit is related to thermal zonation within a Hawaiian fountain where the highest vesicularity clasts traveled in the center and lowest traveled along the margins. Vesicle number densities are greatest in the highest fountaining episode and therefore scale with intensity of activity. Major element chemical analyses and fasciculate crystal textures indicate microlite-rich zones within individual clasts are portions of recycled lava lake material that were incorporated into newly vesiculating primary melt.  相似文献   
82.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
83.
Critical zone influences on hydrologic partitioning, subsurface flow paths and reactions along these flow paths dictate the timing and magnitude of groundwater and solute flux to streams. To isolate first‐order controls on seasonal streamflow generation within highly heterogeneous, snow‐dominated basins of the Colorado River, we employ a multivariate statistical approach of end‐member mixing analysis using a suite of daily chemical and isotopic observations. Mixing models are developed across 11 nested basins (0.4 to 85 km2) spanning a gradient of climatological, physical, and geological characteristics. Hydrograph separation using rain, snow, and groundwater as end‐members indicates that seasonal contributions of groundwater to streams is significant. Mean annual groundwater flux ranges from 12% to 33% whereas maximum groundwater contributions of 17% to 50% occur during baseflow. The direct relationship between snow water equivalent and groundwater flux to streams is scale dependent with a trend toward self‐similarity when basins exceed 5.5 km2. We find groundwater recharge increases in basins of high relief and within the upper subalpine where maximum snow accumulation is coincident with reduced conifer cover and lower canopy densities. The mixing model developed for the furthest downstream site did not transfer to upstream basins. The resulting error in predicted stream concentrations points toward weathering reactions as a function of source rock and seasonal shifts in flow path. Additionally, the potential for microbial sulfate reduction in floodplain sediments along a low‐gradient, meandering portion of the river is sufficient to modify hillslope contributions and alter mixing ratios in the analysis. Soil flushing in response to snowmelt is not included as an end‐member but is identified as an important mechanism for release of solutes from these mountainous watersheds. End‐member mixing analysis used in combination with high‐frequency observations reveals important aspects of catchment hydrodynamics across scale.  相似文献   
84.
85.
86.
Anthropogenic midden deposits are remarkably well preserved at the Neolithic settlement of Çatalhöyük and provide significant archaeological information on the types and nature of activities occurring at the site. To decipher their complex stratigraphy and to investigate formation processes, a combination of geoarchaeological techniques was used. Deposits were investigated from the early ceramic to late Neolithic levels, targeting continuous sequences to examine high resolution and broader scale changes in deposition. Thin‐section micromorphology combined with targeted phytolith and geochemical analyses indicates they are composed of a diverse range of ashes and other charred and siliceous plant materials, with inputs of decayed plants and organic matter, fecal waste, and sedimentary aggregates, each with diverse depositional pathways. Activities identified include in situ burning, with a range of different fuel types that may be associated with different activities. The complexity and heterogeneity of the midden deposits, and thus the necessity of employing an integrated microstratigraphic approach is demonstrated, as a prerequisite for cultural and palaeoenvironmental reconstructions.  相似文献   
87.
Emerald ash borer (EAB) (Agrilus planipennis Fairmaire), an invasive forest insect first identified in southeastern Michigan in 2002, is established in at least 32 US states and three Canadian provinces. Ash (Fraxinus spp.) mortality rates in some forested areas exceed 90%, but to date, little is known about the potential effects of EAB-caused ash mortality on hydrological processes. More broadly, there is a need for information on the timing and magnitude of soil moisture response to species-specific mortality of overstory vegetation in deciduous forest systems. Soil moisture was examined in 28 forested sites where 0–100% of the white ash basal area (Fraxinus americana L.) was killed by EAB. Synoptic measurements of near-surface (0–6 cm depth) soil moisture were collected from 112 plots (18 m radius) within the sites. Three plots were also instrumented with soil moisture sensors at 10 and 25 cm depth to log hourly measurements from May to October. Synoptic data showing white ash mortality and soil moisture were positively correlated in the 34 plots with ≥?5% mortality (by total basal area). In the intensively monitored plots, volumetric soil moisture declined from 37 to 16% between July and September where white ash mortality was low (0.6% of basal area killed), but remained near field capacity (~?30%) throughout the monitoring period in the high mortality plot (8.6% of basal area killed), meriting further investigation to assess effects of white ash mortality on evapotranspiration and soil moisture dynamics in heterogeneous upland forests. Altered soil moisture may have implications for regrowth dynamics, infiltration/runoff partitioning, and nutrient cycling, but additional study to quantify the extent and duration of EAB-related ash mortality on hydrology at the plot and watershed scale is necessary.  相似文献   
88.
The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72?84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57?78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号