This paper demonstrates the plausibility of inferring the spatial variability of geology from topographically derived landscape dissection patterns. This enables surveying large regions for spatial variability in geology, for which direct remote sensing is not feasible, by studying variability in dissection pattern, a feature extracted straight off from digital elevation model data. Dissection pattern is obtained automatically by a novel algorithm, especially designed to delineate the valleys with high accuracy in order to reflect spatial variability in dissection density. The dissection pattern is encapsulated by a continuous map of drainage density, a raster variable best suited for showing spatial variability of dissection. Such a map, constructed for the study area in the Cascade Range, Oregon, USA, shows a sharp discontinuity in the dissection pattern, indicating change in underlying geology. Possible factors controlling the dissection pattern such as climate, local and regional slopes, vegetation, and geology are examined, and geology has been found to be the dominant controlling factor. The dissection contrast coincides with the boundary between the Western and High Cascades, two geologic provinces with different rock ages and types. The older and less permeable Western Cascades are associated with denser dissection pattern, whereas the younger and more permeable High Cascades correspond to less dissected pattern. This new mapping method can be applied to locations where topography is the only readily available data, and the generated map could be used to extract previously unknown geologic or environmental information. 相似文献
Guangdong is the most economically developed province in China, which is a large CO2 emitter and hence is faced with severe carbon reduction pressures. In this paper, a cost assessment methodology based on scenario analysis is presented. A CO2 source and sink database was built at Guangdong after detailed investigations on the point sources and sedimentary basins. Fifteen transport and five storage scenarios were defined and studied, respectively. Cost estimates based on these scenarios show that during its lifetime, the costs of both transport and storage depend on the amount of CO2 processed. More CO2 being processed will bring down the unit costs of both transport and storage. However, it was observed that there is a cost inflection point between the storage amount of 35.2 and 52.8 Mt/year, which means that as the storage amount increases, the storage cost will first decrease and then increase. Source region S1 in Guangdong has been recommended for an early chance of CO2 storage. Preliminary cost comparisons have shown that the results presented in this study are reasonable, but to improve the cost assessment accuracy of offshore CO2 storage, a methodology based on a CO2 storage design that can integrate local prices needs to be further developed. 相似文献