The seepage evolution behavior of compact rock is significant for the stability and safety of many engineering applications. In this research, both hydrostatic and triaxial compression tests were conducted on compact sandstone using an inert gas, namely argon. A triaxial compression test with a water permeability measurement was carried out to study the difference between the gas permeability and water permeability evolutions during the complete stress–strain process. Based on the experimental data, the hydrostatic stress-dependent gas permeability was discussed firstly. A second-order function was proposed to predict and explain the gas slippage effect. The mechanical properties and crack development of the sandstone samples were discussed to better understand the permeability evolution with crack growth during the complete stress–strain process. The results show that the gas permeability evolution can be divided into five stages according to the different crack growth stages. Then, the permeability changes in the crack closure stress \( \sigma_{\text{cc}} \), crack initiation stress \( \sigma_{\text{ci}} \), crack damage stress \( \sigma_{\text{cd}} \) and peak stress \( \sigma_{\text{p}} \) with confining pressures were analyzed. Finally, we found that the difference between the corrected gas permeability and water permeability can be attributed to the interaction between the water and sandstone grains. 相似文献
The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.
During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region. 相似文献
The evolution of the pre-Alpine Corio and Monastero metagabbros points to strong chemical and mineralogical similarities with that of other Permian gabbro bodies of the Alps, which are concentrated in the Southalpine and Austroalpine domains. The structural and metamorphic pre-Alpine evolution of these gabbros records a re-equilibration following the emplacement in the deep crust (P=0.6–0.9 GPa and T=850±70 °C), exhumation through amphibolite facies conditions (P=0.5–0.35 GPa and T=570–670 °C), followed by a greenschist facies imprint (0.25≤P≤0.35 GPa and T<550 °C). This retrograde P–T evolution suggests that the exhumation occurred in a high thermal gradient regime, such as that induced by upwelling of an asthenospheric plume during continental rifting. This would be consistent with the crustal thinning known to have occurred in both the Southalpine and Austroalpine domains during Permian times. The gabbros and their country acid granulites are spatially associated with the serpentinised subcontinental mantle of the Lanzo Massif. This lithologic association and the metamorphic evolution is similar to that of the Fedoz gabbro (Austroalpine Domain of the Central Alps) and completely different from that observed in passive margins, where no remnants of the lower crust occur and the upper granitic crust directly overlies the serpentinized lherzolites. The location of Permian gabbro bodies in the Austroalpine and Southalpine domains and their absence in the Helvetic domain is evidence for asymmetric rifting. 相似文献
The ophiolite-bearing Bangong-Nujiang zone (BNZ) traversing central Tibet from east to west separates the Qiangtang block in the north from the Lhasa block in the south. Their stratigraphic development indicates that both blocks once formed a continuous continental platform until the Late Triassic. Following Late Paleozoic-Triassic rifting, ocean crust formed between both blocks during the Late Triassic creating the Dongqiao-Naqu basin (DNB) among other basins (Yu et al. 1991). The analysis of the rift flank sequences reveals that rifting was dominated by transtension. The basin was shortened by post-Mid-Cretaceous transpression. Thus, the overall basin evolution represents a Reading cycle despite some active margin processes which gave this cycle a special imprint. Major basin parts were preserved despite transpressional shortening suggesting that the eastern BNZ represents a remnant basin. Our understanding of the DNB solves the prior problem of viewing the BNZ as a Mid-Late Jurassic collisional suture although typical collision-related deformation, thickening, mountain building, as well as related molasse formation are lacking. Our model also explains the scattered linear ophiolite distribution by local transpression of remnant oceanic basin floor without having to consider problematic long range ophiolite thrusting. 相似文献
Fracability characterizes the effectiveness of hydraulic fracturing. The existing assessment methods cannot reflect the actual value of the effectiveness due to a lack of comprehensive consideration and neglect of the influences of engineering factors. This study aims to solve this problem by implementing geological static data and production dynamic data in multivariate analysis in Zhaotong shale gas demonstration zone. First, the reservoir quality index (RQI) was introduced to evaluate the exploration potential by integrating the geological parameters with gray relational analysis. Moreover, the differences in fracturing fluid types and proppant sizes were considered, and the operating parameters were normalized on the basis of the equivalence principle. Finally, the general reservoir fracability index (GRFI) was proposed based on a dimensioned processing of the various parameters. A case study was conducted to verify the accuracy and feasibility of this new approach. The results demonstrate that (1) the organic carbon and gas content are adjusted to contribute the most to the calculation of the RQI, while the effective porosity contributes the least; (2) the fracturing scale is the main operating parameter determining the fracability, which has the strongest correlation with the effectiveness of fracking; and (3) the GRFI has a positive correlation with shale gas production, and the lower limit of the GRFI of 2,000 corresponds to a daily production of 50,000 m3/d; this value is defined as the threshold value of a stripper well. The GRFI is consistent with the productivity trend of shale gas wells in the research block, which suggests that the new model is accurate and practical for well candidate selection. 相似文献