首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   15篇
地质学   4篇
海洋学   18篇
天文学   35篇
自然地理   2篇
  2012年   3篇
  2011年   2篇
  2008年   2篇
  2007年   3篇
  2004年   2篇
  2003年   2篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
51.
52.
We examined the variation in aboveground biomass accumulation and tissue concentrations of nitrogen (N), phosphorus (P), copper (Cu), zinc (Zn) and lead (Pb) in Phragmites australis (common reed), Spartina alterniflora (salt cordgrass), and Scirpus mariqueter throughout the growing season (April-October 2005), in order to determine the differences in net element accumulation and distribution between the three salt marsh macrophytes in the Yangtze River estuary, China. The aboveground biomass was significantly greater in the plots of S. alterniflora than in the plots of P. australis and S. mariqueter throughout the growing season (P<0.05). In August, the peak aboveground biomass was 1246+/-89 gDW/m(2), 2759+/-250 gDW/m(2) and 548+/-54 gDW/m(2) for P. australis, S. alterniflora and S. mariqueter, respectively. The concentrations of nutrients and heavy metals in plant tissues showed similar seasonal patterns. There was a steady decline in element concentrations of the aboveground tissues from April to October. Relative element concentrations in aboveground tissues were at a peak during the spring sampling intervals with minimum levels during the fall. But the concentrations of total nitrogen and total phosphorus in the belowground tissues were relatively constant throughout growing season. Generally, trace metal concentrations in the aboveground tissues of S. mariqueter was the highest throughout the growing season, and the metal concentrations of S. alterniflora tissues (aboveground and belowground) were greater than those of P. australis. Furthermore, the aboveground pools of nutrients and metals were consistently greater for S. alterniflora than for P. australis and S. mariqueter, which suggested that the rapid replacement of native P. australis and S. mariqueter with invasive S. alterniflora would significantly improve the magnitude of nutrient cycling and bioavailability of trace metals in the salt marsh and maybe transport more toxic metals into the water column and the detrital food web in the estuary.  相似文献   
53.
54.
55.
We present gas-phase abundances of species found in the organic-rich hot core G327.3-0.6. The data were taken with the Swedish-ESO Submillimetre Telescope (SEST). The 1-3 mm spectrum of this source is dominated by emission features of nitrile species and saturated organics, with abundances greater than those found in many other hot cores, including Sgr B2 and OMC-1. Population diagram analysis indicates that many species (CH3CN, C2H3CN, C2H5CN, CH3OH, etc.) have hot components that originate in a compact (~2") region. Gas-phase chemical models cannot reproduce the high abundances of these molecules found in hot cores, and we suggest that they originate from processing and evaporation of icy grain mantle material. In addition, we report the first detection of vibrationally excited ethyl cyanide and the first detection of methyl mercaptan (CH3SH) outside the Galactic center.  相似文献   
56.
We report the measurement of three new lines of C3O in TMC-1. The observed peak antenna temperatures, appropriately corrected for atmospheric and telescope losses, are found to be consistent with a large velocity gradient radiative transfer model whose parameters span the range of standard values for this cloud. The derived fractional abundance for C3O is 1.4 x 10(-10), comparable with the results predicted from a model calculation based on a gas-phase ion-molecule reaction scheme. The results of negative searches for C3O in six other sources are not inconsistent with expected conditions in these clouds.  相似文献   
57.
Life--as we know it--is a chemical process, based on water and carbon compounds. Complex organic molecules are made primarily from the biogenic elements--carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur--that formed deep within massive ancient stars. How did these elements travel from their stellar birthplaces across time and space to make up the life-form that is reading these words? In this article, we'll take a look at the chemical processes that set the stage for the origin of life.  相似文献   
58.
The J = 2-1 transition of SiO has been searched for toward both hot and cold molecular gas. SiO was not detected toward the dark clouds TMC-1, L134 N, and B335, down to column density upper limits of N < 2-4 x 10(10) cm-2. The species, however, has been observed toward all sources with a kinetic temperature greater than or equal to 30 K, with the largest column densities (N approximately 10(13)-10(17) cm-2) measured in the warmest (TK > or = 100 K) material. The abundance of SiO, relative to HCN, is found to be approximately 0.1-1 in the massive star-forming regions toward Orion and NGC 7538; toward the dark clouds, the upper limits to this ratio is less than 0.0002-0.004. A similar enhancement in the warmer regions is reflected in the SiO/H2 ratio as well. A linear relation was found between the natural log of the SiO concentration and 1/TK, suggesting that the species' formation involves a chemically specific process that contains an activation barrier of approximately 90 K. SiO was also found to be underabundant with respect to SO in cold clouds, with SiO/SO < 1/1000, versus SiO/SO > or =, measured in Orion-KL. The formation of SiO is therefore linked closely to the local gas kinetic temperature, rather than the oxygen abundance, and its synthesis is likely to involve high-temperature gas-phase reactions. The species thus may serve as an unambiguous indicator of high-temperature or "shock" chemistry.  相似文献   
59.
We have observed emission from HCN, H13CN, HC15N, HN13C, H15NC, HC3N, CH3CN, and possibly CH3NC, and determined an upper limit for NH2CN, toward the cold, dark cloud TMC-1. The abundance ratio [HNC]/[HCN] = 1.55 +/- 0.16 is at least a factor approximately 4 and approximately 100 greater than that observed toward the giant molecular clouds DR 21(OH) and Orion KL, respectively. In contrast, for the corresponding methylated isomers we obtain [CH3NC]/CH3CN] < or approximately 0.1. We also find [NH2CN]/[CH3CN] < or approximately 0.1 and [HC3N]/[CH3CN] = 30 +/- 10. We find no evidence for anomalous hyperfine ratios for H13CN, indicating that the ratios for HCN (cf. recent work of Walmsley et al.) are the result of self-absorption by cold foreground gas.  相似文献   
60.
It has been suggested that slope fluctuations on the scale of pixel dimensions could be determined by statistical photoclinometry. A closer study of the surface of Phobos reveals variations in the scattering properties of single particles and micro-structures formed by the particles. In the present context, the photoclinometric method of brightness moments is extended to account for these variations by allowing statistical fluctuations in the phase function of the assumed Lommel-Seeliger scattering law. The mean slope on the investigated regions of Phobos has been found to vary from approximately 12 degrees on a 61m scale to approximately 7 degrees on a 216-272m scale. On the same scales, a value of the order of 2% has been obtained for the standard deviation of the scattering phase function. Hints of a fractal-like scale-invariance have been noticed in the covariance function of brightness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号