首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   609篇
  免费   17篇
  国内免费   28篇
测绘学   7篇
大气科学   53篇
地球物理   182篇
地质学   171篇
海洋学   39篇
天文学   143篇
综合类   10篇
自然地理   49篇
  2024年   2篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   29篇
  2017年   21篇
  2016年   30篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   26篇
  2011年   33篇
  2010年   39篇
  2009年   40篇
  2008年   37篇
  2007年   27篇
  2006年   26篇
  2005年   23篇
  2004年   19篇
  2003年   21篇
  2002年   13篇
  2001年   19篇
  2000年   12篇
  1999年   7篇
  1998年   9篇
  1997年   14篇
  1996年   17篇
  1995年   9篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   3篇
  1988年   4篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
  1959年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有654条查询结果,搜索用时 531 毫秒
601.
602.
Summary The paper presents results of heat flow measurements made in 6 deep bores in the Czechoslovakian part of the Upper Silesian coal basin. The heat flow measured was in the range from 1.74 to 1.87 cal/cm2s. The undisturbed period before the temperature measurement in the bore is discussed and results of repeated temperature measurements carried out 0.1, 1,5 and 36 days after cessation of drilling in one of the bores NP-522, are also given. Although the temperature in the bore still differs considerably from equilibrium, it is possible to determine the temperature gradient with an accuracy better than 5% as soon as 5 days after drilling was finished.  相似文献   
603.
604.
The region encompassing Santa María, Cerro Quemado, and Zunil volcanoes, close to Quetzaltenango, the second largest city of Guatemala, is volcanically and tectonically complex. In addition, the huge Xela caldera, about 20 km in diameter, crosses this area and links up to the important Zunil fault zone located between the three volcanoes. Two highly active geothermal sites, named Zunil-I and Zunil-II, are also located between these three volcanic edifices at the southeastern boundary of Xela caldera. In order to determine the permeability variations and the main structural discontinuities within this complex volcano-tectonic setting, self-potential and soil CO2 flux measurements have been coupled, with a step of 20 m, along a 16.880 km-long profile crossing the entire area. Two shallow hydrothermal systems, with maximum lateral extensions of 1.5 km in diameter, are indicated by positive self-potential/elevation gradients below Santa María and Cerro Quemado volcanoes. Such small hydrothermal systems cannot explain the intense geothermal manifestations at Zunil-I and Zunil-II. Another minor hydrothermal system is indicated by self-potential measurements on the flank of Santa María along the edge of the Xela caldera. CO2 flux measurements display slight variations inside the caldera and decreasing values crossing outside the caldera boundary. We hypothesize the presence of a magmatic body, inside the southeastern border of Xela caldera, to explain the deeper and more intense hydrothermal system manifested by the Zunil-I and the Zunil-II geothermal fields. This magmatic system may be independent from Santa María and Cerro Quemado volcanoes. Alternatively, the hypothesized Xela magmatic system could have a common magmatic origin with the Cerro Quemado dome complex, consistent with previous findings on regional gas emissions. Sectors bordering the Cerro Quemado dome complex also have high amplitude minima-short wavelength anomalies in self-potential, interpreted as preferential rain water infiltration along faults of major permeability, probably related with the most recent stages of Cerro Quemado dome growth.  相似文献   
605.
GCM-based forecast simulations predict continuously increasing seasonality of the sea ice cover and an almost ice-free, summer-time, Arctic Ocean within several decades from the present. In this study we use a primitive equation ocean model: NEMO, coupled with the sea ice model LIM2, to test the hypothesis that under such an increased range in seasonal ice cover the intensity of shelf-basin water exchange will significantly increase. We use the simulated results for the Laptev Sea from a global model run 1958–2007 and compare results for two years with anomalously high and low summer sea ice extents: 1986–1987 and 2006–2007. The shelf–basin fluxes of volume, heat and salt during specific seasons are evaluated and attributed to plausible driving processes, with particular attention to dense water cascading. Analyses of the model temperature distribution at the depth of the intermediate maximum, associated with Atlantic Water, have shown a marked increase of the amount of the local origin cold water in late winter 2007 in the region, where dense water typically appears as a result of its formation on the shelf and subsequent downslope leakage. Calculation of the shelf-basin exchange during March-May in both years confirmed a substantial increase (a factor of two) of fluxes in “ice-free” 2007 compared to the “icy” 1987. According to several past model studies, dense water production on Arctic shelves in winter driven by ice freezing and brine rejection is not likely to cease in a warmer climate, but rather to increase. There is also observational evidence that cascading in the seasonally ice covered seas (e.g. the Barents Sea) is much more efficient than it is in the permanently ice covered Arctic Ocean, which supports these model results.  相似文献   
606.
Active layer thickness (ALT) is critical to the understanding of the surface energy balance, hydrological cycles, plant growth, and cold region engineering projects in permafrost regions. The temperature at the bottom of the active layer, a boundary layer between the equilibrium thermal state (in permafrost below) and transient thermal state (in the atmosphere and surface canopies above), is an important parameter to reflect the existence and thermal stability of permafrost. In this study, the Geophysical Institute Permafrost Model (GIPL) was used to model the spatial distribution of and changes in ALT and soil temperature in the Source Area of the Yellow River (SAYR), where continuous, discontinuous, and sporadic permafrost coexists with seasonally frozen ground. Monthly air temperatures downscaled from the CRU TS3.0 datasets, monthly snow depth derived from the passive microwave remote-sensing data SMMR and SSM/I, and vegetation patterns and soil properties at scale of 1:1000000 were used as input data after modified with GIS techniques. The model validation was carried out carefully with ALT in the SAYR has significantly increased from 1.8 m in 1980 to 2.4 m in 2006 at an average rate of 2.2 cm yr?1. The mean annual temperature at the bottom of the active layer, or temperature at the top of permafrost (TTOP) rose substantially from ?1.1°C in 1980 to ?0.6°C in 2006 at an average rate of 0.018°C yr?1. The increasing rate of the ALT and TTOP has accelerated since 2000. Regional warming and degradation of permafrost has also occurred, and the changes in the areal extent of regions with a sub-zero TTOP shrank from 2.4×104 to 2.2×104 km2 at an average rate of 74 km2 yr?1. Changes of ALT and temperature have adversely affected the environmental stability in the SAYR.  相似文献   
607.
608.
Data about the variations of mesopause temperature (~87 km) obtained from ground-based spectrographic measurements of the OH emission (834.0 nm, band (6-2)) at Irkutsk and Zvenigorod observatories were compared with satellite data on vertical temperature distribution in the atmosphere from Aura MLS v3.3. We analyzed MLS data for two geopotential height levels: 0.005 hPa (~84 km) and 0.002 hPa (~88 km) as the closest to OH height (~87 km). We revealed that Aura MLS temperature data have lower values than ground-based (cold bias). In summer periods, that difference increases. Aura cold biases compared with OH(6-2) at Irkutsk and Zvenigorod were calculated. For the 0.002 hPa height level, the biases are 10.1 and 9.4 K, and for 0.005 hPa they are 10.5 and 10.2 K at Irkutsk and Zvenigorod, respectively. When the bias is accounted for, an agreement between Aura MLS and OH(6-2) data obtained at both Irkutsk and Zvenigorod is remarkable.  相似文献   
609.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   
610.
Concepción is a frequently active composite volcano in Nicaragua, and is located on Ometepe Island, within Lake Nicaragua. Significant eruptive activity took place at this volcano between March and May 2010, consisting of ash and gas explosions (VEI 1–2). We compare geodetic baseline changes observed with global positioning system (GPS), sulfur dioxide flux (SO2), and seismic amplitude (SAM) data collected at Concepción during April – June, 2010, and February – April, 2011. Time series analysis reveals a remarkable correlation among the data sets during 2010, when the volcano was erupting. In contrast, the volcano was at its background level of activity in 2011 and the statistical correlation among the time series is not significant for this period. We explain the emergence of correlation among the time series during eruptive activity through modeling of the GPS data with emplacement of a magma column in an open conduit. In the model, magma rose in the conduit, between May 5 and 14, 2010, from a shallow reservoir located at ~ 1.8 km depth. Later, between May 24 and 31, 2010, the top of the magma column descended to almost 600 m depth, corresponding to the cessation of eruptive activity. Thus, cross-correlation and an integrated analysis of these geophysical time series on a timescale of days helps to reveal the dynamics of the magma plumbing system operating below Concepción volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号