首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   21篇
  国内免费   3篇
测绘学   1篇
大气科学   8篇
地球物理   86篇
地质学   100篇
海洋学   14篇
天文学   36篇
综合类   2篇
自然地理   2篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   19篇
  2016年   12篇
  2015年   13篇
  2014年   11篇
  2013年   13篇
  2012年   11篇
  2011年   19篇
  2010年   16篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   2篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
131.
Much recent work has been focused on understanding the statistical properties of time-occurrence series of earthquakes. Investigating into the patterns of seismic sequences reveals evidence of scaling features in temporal behavior. This is shown in the clustering properties of seismicity of the western Corinth graben, Greece from 1983 to 2000. Power-law behavior has been found by means of Allan factor analysis and Fourier spectra for the earthquake sequence, with consistent values for the scaling exponents, that decrease with the threshold magnitude. The analysis of the temporal variation of the scaling exponent, performed with different threshold magnitudes, reveals an enhancing of the clusterization in correspondence to larger events. The multifractal analysis of the temporal distribution of the events has shown a decrease of the intermittent character with the threshold magnitude.  相似文献   
132.
ABSTRACT In the foothills of the Northern Apennines mud volcanoes are locally aligned along active normal faults, which allow surface leakage of fluids derived from deep sources (>3–6 km). The chemical and isotopic analysis of the fluids of a mud volcano, coupled with the reconstruction of its geological setting, allowed an investigation of the processes of migration and fluid flow. The fault system associated with the Regnano mud volcano drains a deep Miocene reservoir (foredeep marine deposits), which supplies formation water and thermogenic methane that has migrated from underlying Mesozoic carbonates. The muds from the volcano contain late Eocene microfossils and are extruded only during paroxysmal events. They have a shallower origin (about 1 km) from the base of Tertiary marine deposits deposited upon the upper tectonic nappe of the chain (Ligurian unit). This case study suggests that normal faults are very effective in controlling surface emissions.  相似文献   
133.
Mafic eclogites sampled from a restricted area in the Lanterman Range (Antarctica) retrogressed variably under amphibolite facies metamorphism. Assemblages range from well-preserved eclogite, with minor growth of Na-Ca amphibole, to strongly retrogressed ones with extensive development of Ca amphibole. 40Ar-39Ar furnace step-heating experiments on the different amphiboles yield results varying from plateau ages of ~498 Ma to a near-plateau age of ~490 Ma, and the greater the amphibolite retrogression, the younger the age. 40Ar-39Ar infrared laser-probe analyses on rock chips from a well-preserved eclogite and a slightly retrogressed one reveal the presence of an excess argon component. Whereas excess argon is invariably present in garnet and clinopyroxene developed under high-pressure metamorphism, it is heterogeneously distributed in amphibole on a millimetre scale. Results indicate that excess argon was incorporated during high-pressure metamorphism; this component was then lost during retrogression, while a change in composition of ambient argon to atmospheric argon occurred. New 40Ar-39Ar data and previously published Sm-Nd garnet and U-Pb rutile ages obtained from the same well-preserved eclogite sample suggest that the oldest Na-Ca amphibole age is reliable and not an artefact due to the incorporation of excess argon. The variably retrogressed eclogites are thought to derive from different parts of the enclosing metasedimentary rocks that were variably invaded by fluids during amphibolite facies metamorphism. Thus the circulation of fluids promoting (re)crystallisation, and not temperature, was the main process controlling the rate of argon transport in the studied eclogites. The different 40Ar-39Ar ages are interpreted to record diachronous amphibole growth at different crustal levels during exhumation. Data indicate that there was about a 10-Ma interval between the eclogite facies stage (at ̿.5 GPa) and the Ca amphibole-hydration forming reaction (at 0.3-0.5 GPa); this translates into an average exhumation rate of 3-4 km/Ma.  相似文献   
134.
135.
The debris flow (DF) and debris flood (DFD) activity in the Rebaixader catchment (Spanish Pyrenees) is analyzed in this study. The research is focused on how precipitation leads to the triggering of torrential floods and influences the sediment availability during the recharge period, in a supply-unlimited catchment. Two kinds of correlations are studied: (1) the correlation between the rainfall features (intensity and kinetic energy) and the DF/DFD triggering and (2) the correlation between the hyetograph and the DF/DFD volumes. The tested hypothesis was that a greater amount of rainfall during the recharge period would produce a greater DF/DFD volume. The period between two consecutive DF/DFD events is processed using a variable, the Erosion Index, originally developed for the Universal Soil Loss Equation. This analysis considered the rainfall time series and 22 DF/DFD events registered during the period 2009–2015. The results show that the precipitation of the recharge period does not seem to have a strong influence on the mobilized volumes. In many cases, a second DF/DFD event was triggered soon after the previous event, which highlighted the role of the first event in creating an unstable state of the catchment. Additionally, a threshold relationship between the kinetic energy of the rainfall event and the maximum rainfall intensity for a 30-min period seems to be a good criterion to discriminate between triggering and non-triggering rainfall events. The results show no clear trends with which to forecast the sediment volume from precipitation, weakening the role of rainfall characteristics in determining the return period of mobilized sediment volumes in catchments similar to the Rebaixader torrent.  相似文献   
136.
A comprehensive sedimentological study was undertaken in the Miocene of the subalpine massifs and southern Jura (France) with the aim to constrain the evolution of process changes in third-order sequences of peripheral foreland basins during the overfilled phase (i.e. sediment supply higher than accommodation space). Fieldwork analyses based on 35 sedimentological sections allowed the identification of four depositional models: wave dominated, mixed wave-tide, river to tide and river dominated. The sections were dated using chemostratigraphy (i.e. marine strontium isotopic ratios), revealing three-third-order sequences between the Upper Aquitanian and the Langhian. Chronostratigraphical and sedimentological results document prominent and recurrent changes in depositional models along third-order sequences: (i) in the earliest stage of the transgression, mixed-energy coastal environments influenced by the local coastal morphology prevailed (in palaeo-highs or incised valleys); (ii) during the course of the transgression, Gilbert delta deposits suggest a prominent steepening linked to a tectonic uplift in the proximal depozone (between the tectonically active frontal part of the orogenic wedge and the proximal foredeep). Instead, in the distal depozone (between the proximal foredeep and the proximal border of the flexural uplifted forebulge), deposits were characterized either by wave-dominated or mixed wave-tide environments and are likely eustatically-driven; (iii) during the maximum flooding stage, water depth remained shallow below the storm-weather wave base; and (iv) during the regression, the proximal depozone is characterized by the progradation of gravel-rich fan deltas. In the distal depozone, mixed wave-tide systems preceded the development of river to tidal depositional environments. These results were integrated and compared with facies models from other basin analogues worldwide. A model tackling the evolution of process changes within third-order sequences (of the overfilled phase) of foreland basins is proposed, thereby improving sequence stratigraphic predictions in foreland basins.  相似文献   
137.
Although all of the main properties of a ground motion cannot be captured through a single parameter, a number of different engineering parameters has been proposed that are able to reflect either one or more ground‐motion characteristics concurrently. For many of these parameters, especially regarding Greece, there are relatively few or no predictive models. In this context, we present a set of new regionally‐calibrated equations for the prediction of the geometric mean of the horizontal components of 10 amplitude‐, frequency response‐, and duration‐based parameters for shallow crustal earthquakes. These equations supersede previous empirical relationships for Greece since their applicability range for magnitude, and epicentral distance has been extended down to Mw 4 and up to 200 km, respectively, the incorporation of a term accounting for anelastic attenuation has been investigated, while their development was based on a ground‐motion dataset spanning from 1973 to 2014. For all ground‐motion parameters, we provide alternative optimal equations relative to the availability of information on the different explanatory variables. In all velocity‐based and contrary to the acceleration‐based parameters, the anelastic attenuation coefficient was found statistically insignificant when it was combined with the geometric decay and the coefficient accounting for saturation with distance. In the regressions where the geometric decay coefficient simultaneously incorporated the contribution of anelastic attenuation, its increase was found to be much less considerable in the velocity‐based than in the acceleration‐based parameters, implying a stronger effect of anelastic attenuation on the parameters that are defined via the acceleration time history.  相似文献   
138.
In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.  相似文献   
139.
Hydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of ?1.0 to ?0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.  相似文献   
140.
The repellency index (RI) defined as the adjusted ratio between soil‐ethanol, Se, and soil‐water, Sw, sorptivities estimated from minidisk infiltrometer experiments has been used instead of the widely used water drop penetration time and molarity of ethanol drop tests to assess soil water repellency. However, sorptivity calculated by the usual early‐time infiltration equation may be overestimated as the effects of gravity and lateral capillary are neglected. With the aim to establish the best applicative procedure to assess RI, different approaches to estimate Se and Sw were compared that make use of both the early‐time infiltration equation (namely, the 1 min, S1, and the short‐time linearization approaches), and the two‐term axisymmetric infiltration equation, valid for early to intermediate times (namely, the cumulative linearization and differentiated linearization approaches). The dataset included 85 minidisk infiltrometer tests conducted in three sites in Italy and Spain under different vegetation habitats (forest of Pinus pinaster and Pinus halepensis, burned pine forest, and annual grasses), soil horizons (organic and mineral), postfire treatments, and initial soil water contents. The S1 approach was inapplicable in 42% of experiments as water infiltration did not start in the first minute. The short‐time linearization approach yielded a systematic overestimation of Se and Sw that resulted in an overestimation of RI by a factor of 1.57 and 1.23 as compared with the cumulative linearization and differentiated linearization approaches. A new repellency index, RIs, was proposed as the ratio between the slopes of the linearized data for the wettable and hydrophobic stages obtained by a single water infiltration test. For the experimental conditions considered, RIs was significantly correlated with RI and WDPT. Compared with RI, RIs includes information on both soil sorptivity and hydraulic conductivity and, therefore, it can be considered more physically linked to the hydrological processes affected by soil water repellency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号