首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   38篇
  国内免费   11篇
测绘学   22篇
大气科学   58篇
地球物理   263篇
地质学   336篇
海洋学   67篇
天文学   80篇
综合类   1篇
自然地理   53篇
  2023年   7篇
  2021年   18篇
  2020年   10篇
  2019年   16篇
  2018年   32篇
  2017年   25篇
  2016年   24篇
  2015年   24篇
  2014年   30篇
  2013年   53篇
  2012年   41篇
  2011年   41篇
  2010年   52篇
  2009年   49篇
  2008年   45篇
  2007年   48篇
  2006年   37篇
  2005年   36篇
  2004年   34篇
  2003年   38篇
  2002年   25篇
  2001年   19篇
  2000年   13篇
  1999年   15篇
  1998年   16篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1990年   3篇
  1989年   7篇
  1988年   2篇
  1987年   13篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   2篇
  1971年   2篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
41.
Sediment aggregates (“sedimentary pellets”) within the sedimentary record of Lake A (83°00′ N, 75°30′ W), Ellesmere Island, Canada, are used to construct a 1000 year proxy record of ice-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted to form during fall or early winter when littoral sediment adheres to ice forming around the lake’s periphery or during summer through the development of anchor ice. The sediment likely collects in ice interstices and is concentrated in the upper ice layers through summer surface ice melt and winter basal ice growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover allows for their deposition across the lake basin. Sedimentary pellet frequency within multiple sediment cores is used to develop a chronology of ice-cover fluctuations. This proxy ice-cover record is largely corroborated by a record of unusual sedimentation in Lake A involving iron-rich, dark-orange to red laminae overlying more diffuse laminae with a lighter hue. This sediment sequence is hypothesized to represent years with reduced ice cover through increased chemocline ventilation and iron deposition. During the past millennium, the most notable period of inferred reduced ice cover is ca. 1891 AD to present. Another period of ice cover mobility is suggested ca. 1582–1774 AD, while persistent ice cover is inferred during the 1800s and prior to 1582 AD. The proxy ice-cover record corresponds well with most regional melt-season proxy temperature and paleoecological records, especially during the 1800s and 1900s.
Jessica D. TomkinsEmail:
  相似文献   
42.
The phototrophic communities in meromictic, perennially ice-covered Lake A, on Ellesmere Island in the Canadian High Arctic, were characterized by pigment analysis using high performance liquid chromatography. Samples were taken to determine the vertical changes down the water column as well as a variation between years. These analyses showed that Lake A had distinct phototrophic communities in its oxic and anoxic layers. The pigment analyses indicated that phototrophic biomass in the upper, oxic waters was dominated by picocyanobacteria, while in the lower, anoxic layer photosynthetic green sulphur bacteria were dominant. Interannual variation in pigment concentrations was related to the penetration of photosynthetically active radiation in the water column, suggesting that light availability may be limiting the net accumulation of photosynthetic bacterial biomass in Lake A. Pigment analysis of the surface sediments indicated that deposition was dominated by the photosynthetic sulphur bacterial contribution. The sedimentary record of bacterial pigments in polar meromictic lakes offers a promising tool for the reconstruction of past changes in ice cover and therefore in climate.  相似文献   
43.
44.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   
45.
A second generation adjusted precipitation daily dataset has been prepared for trend analysis in Canada. Daily rainfall and snowfall amounts have been adjusted for 464 stations for known measurement issues such as wind undercatch, evaporation and wetting losses for each type of rain-gauge, snow water equivalent from ruler measurements, trace observations and accumulated amounts from several days. Observations from nearby stations were sometimes combined to create time series that are longer; hence, making them more useful for trend studies. In this new version, daily adjustments are an improvement over the previous version because they are derived from an extended dataset and enhanced metadata knowledge. Datasets were updated to cover recent years, including 2009. The impact of the adjustments on rainfall and snowfall total amounts and trends was examined in detail. As a result of adjustments, total rainfall amounts have increased by 5 to 10% in southern Canada and by more than 20% in the Canadian Arctic, compared to the original observations, while the effect of the adjustments on snowfall were larger and more variable throughout the country. The slope of the rain trend lines decreased as a result of the larger correction applied to the older rain-gauges while the slope of the snow trend lines increased, mainly along the west coast and in the Arctic. Finally, annual and seasonal rainfall and snowfall trends based on the adjusted series were computed for 1950–2009 and 1900–2009. Overall, rainfall has increased across the country while a mix of non-significant increasing and decreasing trends was found during the summer in the Canadian Prairies. Snowfall has increased mainly in the north while a significant decrease was observed in the southwestern part of the country for 1950–2009.

  相似文献   
46.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
47.
This paper presents a practical application of the “hydrologic visibility” concept to select the future site of two planned weather radars of the French national network ARAMIS. This selection was realised by simulating the errors in radar rainfall measurement due to interactions of the radar beam with relief, and to the vertical variation of the radar reflectivity with altitude. Results show the interest of these simulations to optimise the radar location according to the objectives of radar coverage. Beyond these results, this paper highlights aspects interesting for hydrology: this type of simulation can be used to assess the radar measurement quality before initiating a quantitative exploitation of radar data, and before making a comparison or a combination with rain gauge data.  相似文献   
48.
The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city’s UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city’s UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 °C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38–1.16 °C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04–1.88 °C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.  相似文献   
49.
Summary This study uses a 1°×1° lat/long dataset, extracted from ECMWF re-analyses for the 15-year period 1979–1993 (ERA-15), to diagnose the synoptic-scale kinematic, thermodynamic and moisture environments in the vicinity of named tropical cyclones (TCs) in the eastern North Pacific. Based on the NCDC best track dataset, TCs are partitioned into one of three categories: weak (W), strong (S) or intensifying (I). In total, 63TCs are examined: 8Ws and 20Is at point A (maximum intensification) and 11Ws, 13Ss and 11Is at point B (maximum frequency). Composite maps are compiled for all five groups, and six individual case studies are examined, four for extreme TC cases and two for cases involving dry air intrusions.For the most part, peak values and patterns of composited ERA-15 variables display circulation, thermodynamic and moisture characteristics that are compatible with the strength represented by a groups classification. Intercomparison between Ws and Is at points A and B yielded larger conditional instability of low-level air parcels and upper-level outflow within the region of maximum intensification (point A).The intrusions of dry versus moist mid-level air are addressed for each storm with the assistance of 72-hour backward trajectories. Trajectory density maps indicate two preferred paths of air parcels that reach the environment of W storms at point A on the 700 and 500hPa levels. The first one crossed Central America in the region of the Isthmus of Tehuantepec and the second one south of the Central American mountains. Several storms revealed that these trajectories were associated with dry air intrusions into the larger storm area, and this might be one reason for their weak status at point A. One documented example is Kevin (1985). By the time it reached point B, the dry air was replaced by air that was moist and Kevin intensified, although it remained a W system. In contrast, Narda (1989) received a dry air intrusion from Central Mexico at 500hPa as a weak storm at point B and did not intensify. Despite possible analyses problems, the documentation in this study of mid-level dry air intrusions into eastern Pacific TCs from the Mexican-Central American region suggests a hitherto unexploited forecast potential. Received January 15, 2002; revised November 28, 2002; accepted December 19, 2002 Published online: May 8, 2003  相似文献   
50.
Granitoids play an important role in deciphering both crustal growth and tectonic evolution of Earth. In the eastern end of the Yinshan–Yanshan belt of North China Craton, the Yiwulüshan massif is a typical region that presents the tectonic evolution features of this belt. Our field work on the host rocks has demonstrated two phases of opposite tectonics: compressional and extensional, however, the deformation is almost invisible in the intrusive rocks. To improve the understanding of the tectonic evolution of the Yiwulüshan massif and the Late Mesozoic tectonics of East Asia, a multidisciplinary study has been carried out. In this study, anisotropy of magnetic susceptibility (AMS) and gravity modeling have been applied on these Jurassic plutons (Lüshan, Jishilazi and Guanyindong), which intrude into the Yiwulüshan massif. According to laboratory measurements and microscopic observations on thin sections, the AMS of the Yiwulüshan massif is characterized by secondary fabrics, indicating that the intensive post solidus deformation has reset the (primary) magmatic magnetic fabrics. A relatively gentle NW dipping magnetic foliation has been identified with two distinct groups of magnetic lineations of N34°E and N335°E orientations, namely LM1 and LM2, relatively. Gravity modeling reveals a southward thinning of the massif with a possible feeding zone rooted in the northern part of the massif. Integrating all results from structural observation, geochronological investigation, AMS measurement and gravity modeling, two tectonic phases have been identified in the Yiwulüshan massif, posterior to the Jurassic (180–160 Ma) magmatism in the Yinshan–Yanshan area. The early one concerns a Late Jurassic–Early Cretaceous (~ 141 Ma) compressional event with a top-to-the-south to southwest sense of shear. The second one shows an Early Cretaceous (~ 126 Ma) NW–SE ductile extensional shearing. At that time, sedimentary basins widened and Jurassic plutons started to be deformed under post solidus conditions. In fact, the NW–SE trend of the maximum stretching direction is a general feature of East Asian continent during Late Mesozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号