首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   23篇
  国内免费   1篇
测绘学   9篇
大气科学   25篇
地球物理   66篇
地质学   169篇
海洋学   28篇
天文学   101篇
综合类   1篇
自然地理   49篇
  2021年   7篇
  2020年   12篇
  2019年   8篇
  2018年   10篇
  2017年   16篇
  2016年   18篇
  2015年   12篇
  2014年   14篇
  2013年   18篇
  2012年   17篇
  2011年   22篇
  2010年   17篇
  2009年   21篇
  2008年   20篇
  2007年   20篇
  2006年   15篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   14篇
  2001年   4篇
  2000年   10篇
  1999年   12篇
  1998年   10篇
  1997年   5篇
  1996年   11篇
  1995年   6篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
91.
92.
The Neoproterozoic Ougda magmatic complex occurs within platformal carbonate rocks in the western part of the Pan-African fold belt of the Tuareg shield (NW Africa). It is composed of - 800 Ma old, relatively high P-T (i.e., Grt + Cpx-bearing: P > 5 kbar; T≈900'Q, tholeiitic mafic/ultramafic cumulates and related rocks intruded by intermediate to mafic calcalkali plutons (e.g., Cpx+Hbl-bearing gabbro) and dikes. Apparent contrasts in structural level of crystallization indicate that the calc-alkali rocks are significantly younger than the tholeiites, which temporally correlate with a period of regional extension in this part of Africa. Intrusion of the calc-alkali rocks may have occurred during the formation of an arc after the tholeiitic rocks had been (diapirically?) emplaced within the shelf carbonates, and prior to (> 630 Ma) the Pan-African orogeny. Data reported herein indicate that the Ougda complex records the inception and demise of a Neoproterozoic ocean basin. Similar crustal sections have been described from collisional (e.g., Aleutian islands) and extensional (e.g., Ivreä-Verbano zone) settings, indicating that processes operating in both environments can generate nearly indistinguishable igneous suites; the prevalence of shallow-level calc-alkali rocks in both settings may mask the presence of more mafic, tholeiitic rocks at depth.  相似文献   
93.
Climate Dynamics - Coarse resolution global climate models (GCMs) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional...  相似文献   
94.
The relationship between stable isotope composition (δ13C and δ18O) in seawater and in larval shell aragonite of the sea scallop, Placopecten magellanicus, was investigated in a controlled experiment to determine whether isotopes in larval shell aragonite can be used as a reliable proxy for environmental conditions. The linear relationship between δ13CDIC and δ13Caragonite (r2 = 0.97, p < 0.0001, RMSE = 0.18) was:
δ13CDIC=1.15(±0.05)∗δ13Caragonite-0.85(±0.04)  相似文献   
95.
96.
Streamlined subglacial landforms that include drumlins in three study areas, the upper Chandra valley around Chandra Tal, the upper Spiti Valley and the middle Yunam Valley of the NW Himalaya of India were mapped and studied using geomorphic, sedimentological and geochronological methods. These streamlined subglacial landforms include a variety of morphological types, including: (i) half egg‐shaped forms; (ii) complex superimposed forms; (iii) dome‐shaped forms; (iv) inverse forms; and (v) flat‐topped symmetrical forms. Sedimentological data indicate that subglacial deformational processes are responsible for the formation of the streamlined subglacial landforms in the Chandra Tal and upper Spiti Valley study areas. In contrast, streamlined landforms in the middle Yunam Valley are the result of melt‐out and subglacial erosional processes. In the Yunam Valley study area, 11 new cosmogenic 10Be surface exposure ages were obtained for boulders inset into the crests of streamlined subglacial landforms and moraines, and also for a bedrock surface. The streamlined landforms date to 8–7 ka, providing evidence of an early Holocene valley glaciation, and older moraines date to ~17–15 and 79–52 ka, representing other significant valley glacial advances in the middle Yunam Valley. The subglacial landforms in the Chandra Valley provide evidence for a ≥300‐m‐thick Lateglacial glacier that advanced southeast, overtopping the Kunzum Range, and advancing into the upper Spiti Valley. The streamlined subglacial landforms in these study areas of the NW Himalaya highlight the usefulness of such landforms in developing glacial chronostratigraphy and for understanding the dynamics of Himalayan glaciation.  相似文献   
97.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   
98.
Matheron and de Marsily [Matheron M, de Marsily G. Is the transport in porous media always diffusive? A counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here, we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mixing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients. The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We investigate the impact of the position of the initial plume and the initial plume size on the (highly anomalous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average. Effectively, the system “remembers” its initial state, the effective transport coefficients show so-called memory effects, which disappear after the solute has sampled the full vertical extent of the medium. We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the stochastic modeling approach and study in this context the transition from the finite to the infinite medium.  相似文献   
99.
We have constructed a model of the physical processes controlling Titan's clouds. Our model produces clouds that qualitatively match the present observational constraints in a wide variety of model atmospheres, including those with low atmospheric pressures (25 mbar) and high atmospheric pressures. We find the following: (1) high atmospheric temperatures (160°K) are important so that there is a large scale height in the first few optical depths of cloud; (2) the aerosol mass production occurs at very low aerosol optical depth so that the cloud particles do not directly affect the photochemistry producing them; (3) the production rate of aerosol mass by chemical processes is probably greater than 3.5 × 10?14 g cm?2 sec?1; (4) and the eddy diffusion coefficient is less than 5 × 106 cm2 sec?1 except perhaps in the top optical depth of the cloud. Our model is not extremely sensitive to particle shape, but it is sensitive to particle density. Higher particle densities require larger aerosol mass production rates to produce satisfactory clouds. Particle densities of unity require a mass production rate on the order of 3.5 × 10?13 g cm?2 sec?1. We also show that an increase in mass input causes a decrease in the mean particle size, as required by J. B. Pollack et al. (1980, Geophys. Res. Lett. 7, 829–832), to explain the observed correlation between the solar cycle and Titan's albedo; that coagulation need not be extremely inefficient in order to obtain realistic clouds as proposed by M. Podolak and E. Podolak (1980, Icarus43, 73–83); that coagulation could be inefficient due to photoelectric charging of the particles; and, that the lifetime of particles near the altitude of unit optical depth is a few months, as required to explain the temporal variability observed by S. T. Suess and G. W. Lockwood and D. P. Cruikshank and J. S. Morgan (1979, Bull. Amer. Astron. Soc.11, 564). Although Titan's aerosols are ottically thick in the vertical direction, the atmosphere is so extended that the horizontal visibility is greater than that found anywhere at Earth's surface.  相似文献   
100.
That microbial siderophores may be mediators of Mn(III) biogeochemistry is suggested by recent studies showing that these well known Fe(III)-chelating ligands form very stable Mn(III) aqueous complexes. In this study, we examine the influence of desferrioxamine B (DFOB), a trihydroxamate siderophore, on the dissolution of hausmannite, a mixed valence Mn(II, III) oxide found in soils and freshwater sediments. Batch dissolution experiments were conducted both in the absence (pH 4-9) and in the presence of 100 μM DFOB (pH 5-9). In the absence of the ligand, there is a sharp decrease in the extent of proton-promoted dissolution above pH 5 and no appreciable dissolution above pH 8. The resulting aqueous Mn2+ activities were in good agreement with previous studies, indirectly supporting the accepted two-step mechanism involving the formation of manganite and reprecipitation of hausmannite. Desferrioxamine B enhanced hausmannite dissolution over the entire pH range investigated, both via the formation of a Mn(III) complex and through surface-catalyzed reductive dissolution. Above pH 8, non-reductive ligand-promoted dissolution dominated, whereas below pH 8, dissolution was non-stoichiometric with respect to DFOB. Concurrent proton-promoted, ligand-promoted, reductive, and induced dissolution was observed, with Mn release by either reductive or induced dissolution increasing linearly with decreasing pH. The fast kinetics of the DFOB-promoted dissolution of hausmannite, as compared to iron oxides, suggest that the siderophore-promoted dissolution of Mn(III)-bearing minerals may compete with the siderophore-promoted dissolution of Fe(III)-bearing minerals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号