首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   21篇
  国内免费   5篇
测绘学   10篇
大气科学   34篇
地球物理   83篇
地质学   107篇
海洋学   12篇
天文学   82篇
综合类   3篇
自然地理   7篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   11篇
  2016年   11篇
  2015年   7篇
  2014年   16篇
  2013年   15篇
  2012年   13篇
  2011年   23篇
  2010年   25篇
  2009年   16篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   15篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   4篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有338条查询结果,搜索用时 31 毫秒
21.
A comprehensive analysis of velocity data from subsurface floats in the northwestern tropical Atlantic at two depth layers is presented: one representing the Antarctic Intermediate Water (AAIW, pressure range 600–1050 dbar), the other the upper North Atlantic Deep Water (uNADW, pressure range 1200–2050 dbar). New data from three independent research programs are combined with previously available data to achieve blanket coverage in space for the AAIW layer, while coverage in the uNADW remains more intermittent. Results from the AAIW mainly confirm previous studies on the mean flow, namely the equatorial zonal and the boundary currents, but clarify details on pathways, mostly by virtue of the spatial data coverage that sets float observations apart from e.g. shipborne or mooring observations. Mean transports in each of five zonal equatorial current bands is found to be between 2.7 and 4.5 Sv. Pathways carrying AAIW northward beyond the North Brazil Undercurrent are clearly visible in the mean velocity field, in particular a northward transport of 3.7 Sv across 16°N between the Antilles islands and the Mid-Atlantic Ridge. New maps of Lagrangian eddy kinetic energy and integral time scales are presented to quantify mesoscale activity. For the uNADW, mean flow and mesoscale properties are discussed as data availability allows. Trajectories in the uNADW east of the Lesser Antilles reveal interactions between the Deep Western Boundary Current (DWBC) and the basin interior, which can explain recent hydrographic observations of changes in composition of DWBC water along its southward flow.  相似文献   
22.
23.
In spite of the fundamental role the Atlantic Meridional Overturning Circulation (AMOC) plays for global climate stability, no direct current measurement of the Denmark Strait Overflow, which is the densest part of the AMOC, has been available until recently that resolve the cross-stream structure at the sill for long periods. Since 1999, an array of bottom-mounted acoustic instruments measuring current velocity and bottom-to-surface acoustic travel times was deployed at the sill. Here, the optimization of the array configuration based on a numerical overflow model is discussed. The simulation proves that more than 80% of the dense water transport variability is captured by two to three acoustic current profilers (ADCPs). The results are compared with time series from ADCPs and Inverted Echo Sounders deployed from 1999 to 2003, confirming that the dense overflow plume can be reliably measured by bottom-mounted instruments and that the overflow is largely geostrophically balanced at the sill.  相似文献   
24.
We discuss the potential variations of the biological pump that can be expected from a change in the oceanic circulation in the ongoing global warming. The biogeochemical model is based on the assumption of a perfect stoichiometric composition (Redfield ratios) of organic material. Upwelling nutrients are transformed into organic particles that sink to the deep ocean according to observed profiles. The physical circulation model is driven by the warming pattern as derived from scenario computations of a fully coupled ocean-atmosphere model. The amplitude of the warming is determined from the varying concentration of atmospheric CO2. The model predicts a pronounced weakening of the thermohaline overturning. This is connected with a reduction of the transient uptake capacity of the ocean. It yields also a more effective removal of organic material from the surface which partly compensates the physical effects of solubility. Both effects are rather marginal for the evolution of atmospheric pCO2. Running climate models and carbon cycle models separately seems to be justified. Received: 9 August 1995 / Accepted: 22 April 1996  相似文献   
25.
26.
Summary First of all it is shown that the nine fundamental suppositions of the kinematic theory of the mantle convection fit well into the image which is obtained from the mantle by other geophysical results. The question of episodicity of the orogenesis is dealt with in connection with the questions of steadiness and unsteadiness of the convection. Moreover it is shown that the ocean-spreading theory and the kinematic mantle convection theory are compatible with each other in their main aspects and that they complement each other.  相似文献   
27.
The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9–2.7μm; 28cm?1 resolution). Major minerals include metallic NiFe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.  相似文献   
28.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   
29.
Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.  相似文献   
30.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号