全文获取类型
收费全文 | 69篇 |
免费 | 0篇 |
专业分类
大气科学 | 5篇 |
地球物理 | 6篇 |
地质学 | 6篇 |
海洋学 | 52篇 |
出版年
2011年 | 2篇 |
2009年 | 2篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 5篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 6篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1980年 | 2篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 2篇 |
排序方式: 共有69条查询结果,搜索用时 13 毫秒
11.
Sea water samples were collected from various depths in the North Pacific (40–21°N) along 165°E in 1991. Their total carbonate (total dissolved carbonate species) contents were determined with random errors less than 0.2% by a coulometric method. The preformed carbonate contents defined by Chen (1982) were calculated from the obtained data and other observed data including potential temperature, salinity, dissolved oxygen and total alkalinity. The same calculation was done for the GEOSECS data obtained in nearly the same region in 1973. The difference between the two data sets reveals that the preformed carbonate has increased by 180±41 gC/m2 during the last 18 years. This value is comparable or somewhat larger than 150 gC/m2 obtained in the case that the ocean uptakes 3 GtC/yr for 18 years and distributes it equally among the world oceans. Based on the results, a hypothesis on the missing sink for the anthropogenic carbon dioxide is presented, in that the missing sink is the intermediate waters formed in the northern North Pacific and the Southern Ocean besides the deep waters formed in the North Atlantic and the Southern Ocean. 相似文献
12.
Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough 总被引:1,自引:0,他引:1
The molecular and carbon isotopic compositions of polar isopranyl glycerol ether lipids, which are direct indicators of viable archaea, and neutral isopranyl glycerol ether lipids, which are derived from polar lipids via hydrolysis, in near-surface sediments from a methane seep in the Nankai Trough (off central Japan) were investigated. Procedures for extracting, separating and derivatizing polar and neutral ether lipids for detection using gas chromatography were first examined with one sediment sample and a cultivated methanogen. For all sediment samples, archaeol and hydroxyarchaeol were detected in both the polar and neutral ether lipid fractions. Acyclic and cyclic biphytanes were also detected in both types of lipid fractions after treatment with HI/LiAlH4 for ether cleavage and alkylation. The δ13C values of archaeol, sn-2-hydroxyarchaeol, and sn-3-hydroxyarchaeol in the sample from 0.82 m below the seafloor were lower than −100‰ relative to PDB, indicating that diverse living methanotrophic archaea are present in the seep sediments. Biphytanes released from polar ether lipids in the same sample were less depleted in δ13C (−71‰ to −36‰). The wide range of δ13C values suggests that the biphytanes were derived not only from methanotrophic but also from non-methanotrophic archaea, and that the relative contributions of the methanotrophic and non-methanotrophic archaea differed, depending on the biphytane compound. The vertical profiles and δ13C values of the neutral ether lipids were similar to those of the intact polar ether lipids, suggesting that neutral ether lipids derived from fossil archaea in the samples had mainly been lost by the time of sampling. 相似文献
13.
A preliminary study of carbon system in the East China Sea 总被引:1,自引:0,他引:1
Shizuo Tsunogai Shuichi Watanabe Junya Nakamura Tsuneo Ono Tetsuro Sato 《Journal of Oceanography》1997,53(1):9-17
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993.
The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption
of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized
total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may
be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized
alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply
of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been
calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess
carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is
about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate
of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial
organic carbon decomposed on the continental shelf. 相似文献
14.
Iodine in sea water of the Pacific was determined with special interest in the relation between iodide and iodate in the surface water of the ocean. The result was discussed with reference to the mechanism of iodide formation proposed byTsunogai andSase. The concentration of iodide varies widely from the lower value than the detection limit to 0.21g at./l, while the concentration of total iodine is nearly constant and the mean value is 0.41g at./l. The vertical profile of iodide often shows the maximum in the surface layer. In the surface layer, the concentration of iodide is higher in warm water (0,10g at./l on the average) than that in cold water of lower temperature than 20° C (0.03g at/l). The highest concentration of iodide among the warm waters is found in the surface water of the equatorial area (0.13g at./l) where the biological productivity is also high. Iodide is generally more enriched in the water having higher biological activity even in the cold water. These results are considered to be compatible with the mechanism of iodide formation proposed. 相似文献
15.
Methane in the East China Sea water 总被引:1,自引:0,他引:1
Methane in the East China Sea water was determined four times at a fixed vertical section along PN line consisting of 11–14 stations, in February 1993, October 1993, June 1994 and August 1994. The mean concentration of methane in the surface water was not significantly higher than that in the open ocean. The methane concentration below the pycnocline increased during the stratified period in summer to autumn and reached to 15 nmoles/l at most in October. The concentration of methane was fairly well correlated with AOU in the layer below the pycnocline in the stratified season. This means that methane in the bottom water has only a single source, which is expected to be anoxic sediments near the coast, and that the oxidation rate of methane in the water is extremely slow in the oxic water. The high methane observed in October completely disappeared in February, indicating that the methane was escaped to the atmosphere or transported to the pelagic ocean by the Kuroshio current. The East China Sea, therefore, is not a large direct and stationary source for the atmospheric methane, but may have some role as a source by supplying it sporadically to the atmosphere in early winter or indirectly from the surface of the pelagic ocean. 相似文献
16.
Vertical profiles of210Pb and230Th in the deep water were analyzed by using a simple one-dimensional model. Both nuclides are considered to settle down with the velocity of 1×10–4 cm/sec. The diameter of particle corresponding to the velocity is calculated to be 5, while only about 10 % of the nuclides can be collected on filter paper with a pore size of 0.5. It is supposed that the nuclides exist in particulate materials which is changeable in size. This suggestion is supported from the following evidences. (1) The directly observed behavior of marine snow and the size distribution of particles observed with a coulter counter. (2) The existence of many chemical elements of which residence time is about 150 years. (3) Their possible existence as eutectic solid phases in the seawater. (4) The consistency of the observed accumulation rate of pelagic sediments with that estimated from the settling velocity. (5) The consistency of the decomposition rate of organic matter in the deep water estimated from the oxygen comsumption with that from the settling velocity. 相似文献
17.
Biogeochemistry of Dimethylsulfoniopropionate (DMSP) in the Surface Microlayer and Subsurface Seawater of Funka Bay,Japan 总被引:1,自引:0,他引:1
Twenty-eight sea surface microlayer samples, along with subsurface bulk water samples were collected in Funka Bay, Japan during October 2000–March 2001 and analyzed for dimethylsulfoniopropionate, dissolved (DMSPd) and particulate (DMSPp), and chlorophyll a. The aim of the study was to examine the extent of enrichment of DMSP in the microlayer and its relationship to chlorophyll a, as well as the production rate of dimethylsulfide (DMS) from DMSP and the factors that influence this. The enrichment factor (EF) of DMSPd in the surface microlayer ranged from 0.81 to 4.6 with a mean of 1.85. In contrast, EF of DMSPp in the microlayer varied widely from 0.85–10.5 with an average of 3.21. Chlorophyll a also appeared to be enriched in the microlayer relative to the subsurface water. This may be seen as an important cause of the observed enrichment of DMSP in the microlayer. The concentrations of DMSPp in the surface microlayer showed a strong temporal variation, basically following the change in chlorophyll a levels. Moreover, the microlayer concentrations of DMSPp were, on average, 3-fold higher than the microlayer concentrations of DMSPd and there was a significant correlation between them. Additionally, there was a great variability in the ratios of DMSPp to chlorophyll a over the study period, reflecting seasonal variation in the proportion of DMSP producers in the total phytoplankton assemblage. It is interesting that the production rate of DMS was enhanced in the microlayer and this rate was closely correlated with the microlayer DMSPd concentration. Microlayer enrichment of chlorophyll a and higher DMS production rate in the microlayer provide favorable evidence supporting the view that the sea surface microlayer has a greater biological activity than the underlying water. 相似文献
18.
Shizuo Tsunogai 《Journal of Oceanography》1984,40(4):314-322
Since 1960 when I was a senior student, I have studied natural phenomena observed in the hydrosphere and atmosphere by means
of chemical elements. Each of the phenomena is, in general, very complicated and so I have attempted to depict the whole picture
of material circulation in the marine environment by studying its various aspects at the same time. My chief strategy has
been to use natural radio-nuclides as clocks of various phenomena, and to use sediment traps for the determination of vertical
fluxes in the ocean. The many results I have obtained can be summarized as follows.
1. I have found that several sporadic events control the material exchange through the atmosphere. These include the strong
winter monsoon and typhoons that transport sea-salt particles to the Japanese Islands, theKosa episodes that transport soil dust to the ocean, and storms that result in exchange of sparingly soluble gases such as oxygen
and carbon dioxide at the air-sea interface. I have also proved quantitatively that the source of aluminosilicate material
in pelagic sediments is air-borne dust.
2. I have proposed a model,Settling model, for the removal of chemical substances from the ocean and found various lines of evidence supporting the model. This model
predicts the reversibility in the existing state of insoluble chemical elements in seawater among large settling particles,
small suspended particles and colloidal particles that pass through a membrane filter and explains well their behavior in
the ocean. I have first precisely measured calcium and iodine in the ocean and have explained their distributions on the basis
of the solution and redox equilibria.
3. Using chemical tracers, I have estimated the vertical eddy diffusion coefficients to be 1.2 cm2sec−1 for the Pacific deep water, 0.5 cm2sec−1 for the deep Bering Sea water and 3–80 cm2sec−1 for the Pacific surface water, and have studied the structure of water masses in the western North Pacific and the Sea of
Japan. I have also invented and applied a method for the calculation of the age of deep waters using radiocarbon.
4. I have calculated the rates of decomposition of organic matter and the regeneration rates of chemical components in the
deep and bottom waters as well as coastal waters by modelling water circulation and mixing. Particulate fluxes and regeneration
rates are larger in the deep waters beneath the more biologically productive surface waters. I have stressed the role of silicate
in the marine ecosystem, especially in the succession of phytoplankton species.
5. I have quantitatively studied the migration of chemical elements during the early diagenesis of bottom sediments especially
manganese using chemical and radiochemical techniques. Manganese is being actively recycled not only in coastal seas but also
in pelagic sediments except in the highly oligotrophic subtropical ocean. This recycling can explain the formation of manganese
nodules and enables us to balance the manganese budget in the ocean. 相似文献
19.
Abstract We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2 H6 in the samples. A combination of the CH4 /C2 H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13 < δ13 suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials. 相似文献
20.