首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   11篇
  国内免费   3篇
测绘学   14篇
大气科学   15篇
地球物理   84篇
地质学   121篇
海洋学   82篇
天文学   41篇
综合类   3篇
自然地理   62篇
  2023年   2篇
  2020年   2篇
  2019年   10篇
  2018年   4篇
  2017年   7篇
  2016年   14篇
  2015年   11篇
  2014年   17篇
  2013年   31篇
  2012年   17篇
  2011年   19篇
  2010年   16篇
  2009年   27篇
  2008年   14篇
  2007年   16篇
  2006年   16篇
  2005年   20篇
  2004年   8篇
  2003年   21篇
  2002年   12篇
  2001年   9篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1969年   2篇
  1966年   1篇
  1965年   2篇
  1960年   2篇
排序方式: 共有422条查询结果,搜索用时 62 毫秒
101.
Based on studies of sediment accumulations deposited from-and erode by-alongslope flowing ocean currents on the European continental margin from Porcupine (Ireland) to Lofoten (Norway), the evolution of the Cenozoic paleocirculation was reconstructed as part of the STRATAGEM project. There is evidence of ocean current-controlled erosion and deposition in the Rockall Trough, in the Faeroe-Shetland Channel and on the Vøring Plateau since the late Eocene, although the circulation pattern remains ambiguous. The late Palaeogene flow in the Rockall Trough was almost probably driven by southerly-derived Tethyan Outflow Water. The extent and strength of any northerly-derived flow is uncertain. From the early Neogene (early-mid-Miocene), there was a massive regional expansion of contourite drift development both in the North Atlantic and in the Norwegian-Greenland Sea. This was most probably related to the development of the Faroe Conduit, the opening of the Fram Strait and the general subsidence of the Greenland-Scotland Ridge. These may have combined to cause a considerable acceleration in the exchange and overflow of deep waters between the Arctic and Atlantic Oceans. An early late Neogene (late early Pliocene) regional erosional event has been ascribed to a vigorous pulse of bottom-current activity, most probably the result of a global reorganisation of ocean currents associated with the closure of the Central American Seaway. During the late Neogene, contourites and sediment drifts developed in deep-water basins, between units of glacigenic sediments as well as infill of several paleo-slide scars. These sediments were derived from areas of bottom-current erosion as well as from the development of Plio-Pleistocene prograding sediment wedges, incorporating the extensive sediment supply derived from shelf-wide ice sheets. Presently a profound winnowing prevails along the shelf and upper slope due to the inflowing currents of Atlantic water. Depocentres of sediments derived from the winnowing are located (locally) in lower slope embayments and in slide scars.  相似文献   
102.
The aim of this study is to enhance the understanding of the occurrence of flood‐generating events in urban areas by analysing the relationship between large‐scale atmospheric circulation and extreme precipitation events, extreme sea water level events and their simultaneous occurrence, respectively. To describe the atmospheric circulation, we used the Lamb circulation type (LCT) classification and re‐grouped it into Lamb circulation classes (LCC). The daily LCCs/LCTs were connected with rare precipitation and water‐level events in Aarhus, a Danish coastal city. Westerly and cyclonic LCCs (W, C, SW and NW) showed a significantly high occurrence of extreme precipitation. Similarly, for extreme water‐level events westerly LCCs (W and SW) showed a significantly high occurrence. Significantly low occurrence of extreme precipitation and water‐level events was obtained in easterly LCCs (NE, E and SE). For concurrent events, significantly high occurrence was obtained in LCC W. We assessed the change in LCC occurrence frequency in the future based on two regional climate models (RCMs). The projections indicate that the westerly directions in LCCs are expected to increase in the future. Consequently, simultaneous occurrence of extreme water level and precipitation events is expected to increase in the future as a result of change in LCC frequencies. The RCM projections for LCC frequencies are uncertain because the representation of current LCCs is poor; a large number of days cannot be classified and the frequencies of the days that can be classified differ from the observed time series. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
103.
Flakket on the island of Anholt in Denmark is a cuspate foreland facing the microtidal Kattegat sea. It is composed of a number of beach ridges typically covered by dune sand and separated by swales and wetlands. OSL dating indicates that the evolution of Flakket began c. AD 1000. Foreland growth was punctuated by a major episode of coastal reorganization leading to coastal retreat c. AD 1800. Coastal retreat led to the formation of an erosion surface that separates older and higher‐lying beach‐ridge and swale deposits from younger and lower‐lying deposits. The palaeo‐sea level is deduced from the architecture of the deposits, and interpretation of ground‐penetrating radar data and geomophological observations indicates that relative sea level was about 1.90±0.25 m above present sea level c. AD 1000, but about 0.00±0.25 m relative to present sea level c. AD 1830 and c. AD 1870. Anholt is situated at the margin of the uplifted Fennoscandian area; assuming uplift to be about 1.2 mm a?1 it follows that absolute sea level was about +0.70±0.25 m at AD 1000, but around ?0.22±0.25 m at AD 1830 and around ?0.17±0.25 m at AD 1870. Within the uncertainties of the age control, the sea‐level indicators mapped by ground‐penetrating radar reflections and the variability of estimates of uplift found in the literature, the result obtained for AD 1000 is consistent with findings from the Stockholm area in Sweden and with a recently published global sea‐level curve.  相似文献   
104.
Analysis of the aerosol properties during 3 recent international field campaigns (ACE‐1, TARFOX and ACE‐2) are described using satellite retrievals from NOAA AVHRR data. Validation of the satellite retrieval procedure is performed with airborne, shipboard, and land‐based sunphotometry during ACE‐2. The intercomparison between satellite and surface optical depths has a correlation coefficient of 0.93 for 630 nm wavelength and 0.92 for 860 nm wavelength. The standard error of estimate is 0.025 for 630 nm wavelength and 0.023 for 860 nm wavelength. Regional aerosol properties are examined in composite analysis of aerosol optical properties from the ACE‐1, TARFOX and ACE‐2 regions. ACE‐1 and ACE‐2 regions have strong modes in the distribution of optical depth around 0.1, but the ACE‐2 tails toward higher values yielding an average of 0.16 consistent with pollution and dust aerosol intrusions. The TARFOX region has a noticeable mode of 0.2, but has significant spread of aerosol optical depth values consistent with the varied continental aerosol constituents off the eastern North American Coast.  相似文献   
105.
Here we investigate the use of optically stimulated luminescence (OSL) for dating cobbles from the body of successive beach ridges and compare cobble surface‐derived ages to standard quartz OSL ages from sand. Between four and eight cobbles and sand samples (age control) were dated with the luminescence method, taken from the modern beach and from beach ridges on the south and north extremes of a prograding spit on the westernmost coast of Lolland, Denmark. Luminescence‐depth profiles perpendicular to the surfaces of the cobbles show that the feldspar infrared signals stimulated at 50 °C were fully reset to various depths into the cobbles prior to final deposition; as a result, the equivalent doses determined from close to the surface of such cobbles can be used to calculate burial ages. Beach‐ridge burial ages given by the average of ages of individual cobbles taken from the same site are consistent, within errors, with the ages derived from the sand samples. Cobble‐ and sand‐derived ages show that the southernmost beach ridge at Albuen was formed around 2 ka ago, indicating that this sandy spit is younger than other coastal systems in Denmark. The agreement between ages derived from clasts and from standard quartz OSL in this study confirms that, even in the absence of sandy sediments, we can reliably date sites using OSL by targeting larger clasts. In addition, the record of prior light exposure contained in the shape of the cobbles’ luminescence‐depth profile removes one of the major uncertainties (i.e. the degree of signal reset prior to burial) in the luminescence dating of high latitude sites.  相似文献   
106.
The significance of variations in the sediment flux from western Scandinavia during the Cenozoic has been a matter of debate for decades. Here we compile the sediment flux using seismic data, boreholes and results from other publications and discuss the relative importance of causal agents such as tectonism, climate and climate change. Western Scandinavia, the northern British Isles and the Faeroe‐Shetland Platform were significant sediment sources during the Paleocene, which is well founded in tectonic causes related to the opening of the North Atlantic. From the Eocene and onward, variations in the sediment flux from western Scandinavia correlate better with climate and climate change. During the Eocene, sediment production was low. From the late Eocene onward, increased seasonality may have contributed to stimulating the sediment flux. Significant climatic cooling episodes correlate with Oligocene deposits in the North Sea, the post‐mid‐Miocene Molo and Kai Formations of the Norwegian Shelf, the southern North Sea delta system and large volumes of the Late Pliocene‐Holocene Naust Formation. The sediment flux from Scandinavia during the Cenozoic is in general agreement with the detrital flux to the world's oceans. Furthermore, the large variations in the size of sediment catchment areas as well as the possibility of submarine and glacial erosion must be incorporated to understand regional variations in climate driven sediment flux.  相似文献   
107.
As the 7 December 2007 equinox of Uranus approached, collaboration between ring and atmosphere observers in the summer and fall of 2007 produced a substantial collection of ground-based observations using the 10-m Keck telescope with adaptive optics and space-based observations with the Hubble Space Telescope. Both near-infrared and visible-wavelength imaging and spatially resolved near-infrared spectroscopic observations were obtained. We used observations spanning the period from 7 June 2007 through 9 September 2007 to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. Atmospheric motions were obtained over a wider range of latitudes than previously was possible, extending to 73°N, and for 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58°N. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images, we found two prominent groups of discrete cloud features with very long lifetimes. The one near 30°S has departed from its previous oscillatory motion and started a significant northward drift, accompanied by substantial morphological changes. The complex of features near 30°N remained at a nearly fixed latitude, while exhibiting some characteristics of a dark spot accompanied by bright companion features. Smaller and less stable features were used to track cloud motions at other latitudes, some of which lasted over many planet rotations, though many could not be tracked beyond a single transit. A bright band has developed near 45°N, while the bright band near 45°S has begun to decline, both events in agreement with the idea that the asymmetric band structure of Uranus is a delayed response to solar forcing, but with a surprisingly short delay of only a few years.  相似文献   
108.
Ionospheric corrections of Mars advanced radar for subsurface and ionosphere sounding (MARSIS) subsurface sounding signals are necessary before they can be further analyzed. Usually the ionosphere correction only considers the phase dispersion owing to the electron densities. In this paper we show that if the electron-neutral collision frequency is included in the correction filter, the signal-to-noise ratio of the processed signal can be further maximized and the spatial resolution of the signal be improved. Three different models of the ionosphere profile have been studied, and it is shown that a uniform slab model, of both densities and collisions, is feasible and probably the best choice when implementing the correction filter including collisions. The physical significance of the parameters obtained with the uniform model (equivalent parameters) is discussed, and it is shown that they are useful for the estimation of the real physical parameters of the ionosphere. We developed a recursive, random search algorithm to facilitate the realization of the correction process with the filter including collision frequency.  相似文献   
109.
The natural Australian landscape sustains a mosaic of wetlands that range from permanently wet to temporary. This diversity of wetland types and habitats provides for diverse biotic communities, many of which are specific to individual wetlands. This paper explores the prospects for southern Australian wetlands under modified water regime and salinity induced by climatic changes. Extended droughts predicted as a consequence of climate change (lower rainfall and higher temperatures) combined with human-induced changes to the natural hydrological regime will lead to reductions in the amount of water available for environmental and anthropogenic uses. Reduced runoff and river flows may cause the loss of some temporary wetland types that will no longer hold water long enough to support hydric communities. Species distributions will shift and species extinctions may result particularly across fragmented or vulnerable landscapes. Accumulation of salts in wetlands shift species-rich freshwater communities to species-poor salt tolerant communities. Wetlands will differ in ecological response to these changes as the salinity and drying history of each wetland will determine its resilience: in the short term some freshwater communities may recover but they are unlikely to survive and reproduce under long term increased salinity and altered hydrology. In the long term such salinized wetlands with altered hydrology will need to be colonized by salt tolerant species adapted for the new hydrological conditions if they are to persist as functional wetlands. As the landscape becomes more developed, to accommodate the need for water in a warmer drying climate, increasing human intervention will result in a net loss of wetlands and wetland diversity.  相似文献   
110.
The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700 years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250 MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ~ 10 m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1 m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5 m was reached 6500 years ago; 700 years later the relative sea level had dropped 0.7 m indicating a change in the relative sea level around 1 mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号