首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
大气科学   5篇
地球物理   6篇
地质学   5篇
海洋学   52篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有68条查询结果,搜索用时 0 毫秒
41.
The surface water of the Japan Sea contained226Ra of70 ± 4dpm m−3 which was nearly equal to that of the surface water in the North Pacific. The concentration of226Ra in the Japan Sea deep water below 500 m was151 ± 8dpm m−3, showing a vertically and regionally small variation. This concentration of226Ra in the deep water is unexpectedly high, because the Japan Sea deep water has a higher Δ14 C value by about 50‰ than the Atlantic deep water containing the same226Ra. One of the causes to be considered is larger contribution of226Ra from biogenic particles dissolving in the Japan Sea deep water, but the Japan Sea is not so fertile in comparison to the Bering Sea. The other more plausible cause is the internal ventilation of the Japan Sea water, which means that the residence time of the Japan Sea Proper water is considerably long although the water is vertically mixed fairly well especially in winter. The ventilation may supply some amounts of radiocarbon and oxygen but does not change the inventory of226Ra. The residence times of the Japan Sea deep water and of water within the Japan Sea are calculated by solving simultaneous equations for226Ra and14C with a three-box model to be 300–400 years and 700–1000 years, respectively.  相似文献   
42.
Weekly aerosol samples were collected for two years from 1981 at six stations in the western North Pacific region. The samples were analyzed for aluminum to determine the mineral dust concentration in the air. By combining our data with observations in the central and eastern North Pacific by a US research group, the following results and conclusions have been obtained. Spring peaks in atmospheric mineral dust were observed at all the stations accompanied byKosa episodes (hazes due to mineral dust of Chinese origin). The spring peaks, however, varied from year to year. The mean concentration of mineral dust depends not only on the distance from the Asian coast but also on the latitude of the sampling station. The half-decrease distance of the atmospheric mineral dust turned out to be 500–600 km for all latitudes in the western North Pacific. This indicates that the rate of deposition of mineral dust in the western North Pacific is much larger than that in the central and eastern North Pacific.  相似文献   
43.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   
44.
In Funka Bay of Hokkaido, Japan, seawater, suspended matter and settling matter were collected once every month in the summer of 1974. These samples were analyzed for234Th, a short-lived daughter of dissolved238U. A pronounced disequilibrium between234Th and238U, and a highly variable concentration of234Th were found. Positive correlation, however, exist among the deficiency of234Th relative to238U in seawater, the concentration of particulate234Th, the fraction of particulate234Th to total234Th in seawater, the total dry weight of suspended matter, and the primary productivity during the month previous to sampling. The specific activity of234Th for the settling particles (620 ± 170 dpm/g) was nearly equal to that for suspended particles (720 ± 600 dpm/g) but much greater than that for plankton (47 ± 24 dpm/g). These facts suggest that suspended particles are somehow closely related to the removal of heavy metals from seawater, in spite of the negligibly small settling flux of suspended matter. The residence time of thorium in Funka Bay (mean depth: 60 m) is found to be about 60 days, which is nearly equal to those of210Pb and210Po.  相似文献   
45.
210Pb in the surface water of the North Pacific was extensively determined. The results showed that the highest concentrations of210Pb of 19 ± 3dpm/100kg were found in the northern mid-latitudes around 30°N, but longitudinal variation across the North Pacific was not observed. The mean residence time of210Pb in the surface water up to 100 m in depth is calculated to be 230 days. In the mid-latitudes of the northern hemisphere,210Pb may be transported by the prevailing westerly wind of a higher speed than 15 m/sec, likely the jet stream.  相似文献   
46.
Substantial amounts of adsorbed methane were detected in authigenic carbonate concretions recovered from sedimentary layers from depths between 245 and 1,108 m below seafloor during Ocean Drilling Program Leg 186 to ODP sites 1150 and 1151 on the deep-sea terrace of the Japan Trench. Methane contents were almost two orders of magnitude higher in the concretions (291–4,528 nmol/g wet wt) than in the surrounding bulk sediments (5–93 nmol/g wet wt), whereas methane/ethane ratios and stable carbon isotopic compositions were very similar. Carbonate content of surrounding bulk sediments (0.02–3.2 wet wt%) and methane content of the surrounding bulk sediments correlated positively. Extrapolation of the carbonate contents of bulk sediments suggests that 100 wt% carbonate would correspond to 1,886±732 nmol methane per g bulk sediment, which is similar to the average value observed in the carbonate concretions (1,321±1,067 nmol/g wet wt, n = 13). These data support the hypothesis that, in sediments, adsorbed hydrocarbon gases are strongly associated with authigenic carbonates.  相似文献   
47.
This is the first detailed study on the distribution of lead-210 in the Japan Sea water. The content of lead-210 ranged from 9.3±2.1 dph/l in the surface water to 3.4+-0.8 dph/l in the deep water—a quite low content as compared to that in the deep water of the North Pacific. Vertical profiles show that the content of lead-210 abruptly decreases below the seasonal thermocline (10–20 m in depth) and nearly uniform in the deep water. It is suggested that a significant amount of air-borne lead-210 deposited over the Japan Sea is transported along with the Tsushima Current to the open ocean. The budget of lead-210 is calculated by using a simple box-model and the mean residence time of lead-210 in the Japan Sea is estimated to be 15 yr.  相似文献   
48.
49.
Calcium in sea water was determined of the samples taken from the Antarctic and Indian Oceans. Surface water commonly contains less calcium relative to chlorinity than does deep water. The tendency, however, is very faint in the Antarctic Ocean. In the surface waters, the Ca/Cl ratio is lower in the tropical and subtropical waters and the ratio well correlates with phosphate. The Ca/P ratio is calculated as 37 in atomic ratio. These may indicate that calcium is uptaken by organisms to make skeletal parts from surface water which is supersaturated with respect to calcite or aragonite. On the other hand, no definite correlationship between calcium and phosphate is found in subsurface water. This fact suggests that the regeneration process of calcium from organic debris is different from that of phosphate. The increase-rate of calcium in the abyssal water is estimated to be 0.18g at./(1 yr), which is due to the dissolution of calcium carbonate. The rate is about a half of total carbonate increase in the water.  相似文献   
50.
Particulate fluxes were determined by two methods to elucidate the behavior of settling particles in seawater. One method involves direct observation of fluxes with sediment traps, while in the other method flux is indirectly calculated from the radioactive disequilibrium between U-238 and Th-234 in seawater, which gives net flux. Observations were carried out several times throughout a year in Funka Bay. When linearly extrapolated, the observed gross fluxes of Th-234 did not converge to zero at the surface. In the subsurface water the difference between the observed and calculated fluxes showed a seasonal variation. The observed fluxes roughly coincided with the calculated net fluxes in the summer stratified water but the observedfluxes were much larger than the calculated ones in the convective winter water. Conversely the observed fluxes were smaller than the calculated ones in spring when the water was exchanging. These results suggest that we can apply this two approach method to get information not only on the behavior of settling particles in seawater but also on the physical stability of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号