首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   4篇
大气科学   10篇
地球物理   21篇
地质学   26篇
海洋学   7篇
天文学   25篇
自然地理   2篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   3篇
  2011年   6篇
  2010年   10篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
41.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   
42.
Time-domain models of marine structures based on frequency domain data are usually built upon the Cummins equation. This type of model is a vector integro-differential equation which involves convolution terms. These convolution terms are not convenient for analysis and design of motion control systems. In addition, these models are not efficient with respect to simulation time, and ease of implementation in standard simulation packages. For these reasons, different methods have been proposed in the literature as approximate alternative representations of the convolutions. Because the convolution is a linear operation, different approaches can be followed to obtain an approximately equivalent linear system in the form of either transfer function or state-space models. This process involves the use of system identification, and several options are available depending on how the identification problem is posed. This raises the question whether one method is better than the others. This paper therefore has three objectives. The first objective is to revisit some of the methods for replacing the convolutions, which have been reported in different areas of analysis of marine systems: hydrodynamics, wave energy conversion, and motion control systems. The second objective is to compare the different methods in terms of complexity and performance. For this purpose, a model for the response in the vertical plane of a modern containership is considered. The third objective is to describe the implementation of the resulting model in the standard simulation environment Matlab/Simulink.  相似文献   
43.
The thermal conductivity of meteorites: New measurements and analysis   总被引:1,自引:0,他引:1  
C.P. Opeil  D.T. Britt 《Icarus》2010,208(1):449-6159
We have measured the thermal conductivity at low temperatures (5-300 K) of six meteorites representing a range of compositions, including the ordinary chondrites Cronstad (H5) and Lumpkin (L6), the enstatite chondrite Abee (E4), the carbonaceous chondrites NWA 5515 (CK4 find) and Cold Bokkeveld (CM2), and the iron meteorite Campo del Cielo (IAB find). All measurements were made using a Quantum Design Physical Properties Measurement System, Thermal Transport Option (TTO) on samples cut into regular parallelepipeds of ∼2-6 mm dimension. The iron meteorite conductivity increases roughly linearly from 15 W m−1 K−1 at 100 K to 27 W m−1 K−1 at 300 K, comparable to typical values for metallic iron. By contrast, the conductivities of all the stony samples except Abee appear to be controlled by the inhomogeneous nature of the meteorite fabric, resulting in values that are much lower than those of pure minerals and which vary only slightly with temperature above 100 K. The L and CK sample conductivities above 100 K are both about 1.5 W m−1 K−1, that of the H is 1.9 W m−1 K−1, and that of the CM sample is 0.5 W m−1 K−1; by contrast the literature value at 300 K for serpentine is 2.5 W m−1 K−1 and those of enstatite and olivine range from 4.5 to 5 W m−1 K−1 (which is comparable to the Abee value). These measurements are among the first direct measurements of thermal conductivity for meteorites. The results compare well with previous estimates for meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures and meteorite types. If the rocky material that makes up asteroids and provides the dust to comets, Kuiper Belt objects, and icy satellites has the same low thermal conductivities as the ordinary and carbonaceous chondrites measured here, this would significantly change models of their thermal evolution. These values would also lower their thermal inertia, thus affecting the Yarkovsky and YORP evolution of orbits and spin for solid objects; however, in this case the effect would not be as great, as thermal inertia only varies as the square root of the conductivity and, for most asteroids, is controlled by the dusty nature of asteroidal surfaces rather than the conductivity of the material itself.  相似文献   
44.
45.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   
46.
Tube‐shaped beads excavated from grave pits at the prehistoric Gerzeh cemetery, approximately 3300 BCE, represent the earliest known use of iron in Egypt. Using a combination of scanning electron microscopy and micro X‐ray microcomputer tomography, we show that microstructural and chemical analysis of a Gerzeh iron bead is consistent with a cold‐worked iron meteorite. Thin fragments of parallel bands of taenite within a meteoritic Widmanstätten pattern are present, with structural distortion caused by cold‐working. The metal fragments retain their original chemistry of approximately 30 wt% nickel. The bulk of the bead is highly oxidized, with only approximately 2.4% of the total bead volume remaining as metal. Our results show that the first known example of the use of iron in Egypt was produced from a meteorite, its celestial origin having implications for both the perception of meteorite iron by ancient Egyptians and the development of metallurgical knowledge in the Nile Valley.  相似文献   
47.
The Tagil paleo-island arc terrane is composed of Late Ordovician-Devonian intrusive, volcanic, and volcano-sedimentary complexes. The western margin of the terrane is comprised of dunite-clinopyroxenite-gabbro massifs of the Ural platinum-bearing belt, which are fringed by rock strata of widely different metamorphic grades. Work on isotope systematics of olivine gabbros enabled us to infer a Vendian age (550–540 Ma) of homogenization of the Sm-Nd isotopic system of the Kytlym and Knyaspa massifs within the Ural platinum-bearing belt. The Sm-Nd ages for metamorphic rocks of the Belaya Gora complex surrounding the studied massifs also agree with a Vendian age (573–574 Ma). Our results suggest that metamorphites of the Belaya Gora complex (amphibolites, plagiogneisses, two-mica and biotite gneisses, schists containing garnet, cordierite, staurolite, gedrite, and sillimanite) and dunite-clinopyroxenite-gabbro intrusions of the proto-platinum-bearing belt may have been formed in a convergence setting above a mantle plume, most likely in a back-arc (?) extension region. Reactivation of this plume during the late Precambrian resulted in the opening of the Ural paleo-ocean. The Late Ordovician-Early Devonian times were marked by metamorphic reworking and tectonic transport of pre-Paleozoic complexes into an accretionary prism setting of the Tagil paleo-arc that was accompanied by generation of gabbroid and granitoid magmas. Based on the obtained results, the Tagil terrane can be now considered as part of the Paleozoic paleo-island arc system developed on a heterogeneous Proterozoic basement.  相似文献   
48.
49.
We demonstrate and validate a Bayesian approach to model calibration applicable to computationally expensive General Circulation Models (GCMs) that includes a posterior estimate of the intrinsic structural error of the model. Bayesian artificial neural networks (BANNs) are trained with output from a GCM and used as emulators of the full model to allow a computationally efficient Markov Chain Monte Carlo (MCMC) sampling of the posterior for the GCM parameters calibrated against seasonal climatologies of temperature, pressure, and humidity. We validate the methodology by calibrating to targets produced by a model run with added noise. We then demonstrate a calibration of five GCM parameters against an observational data set. The approach accounts for both parametric and structural uncertainties of the model as well as uncertainties associated with the observational calibration data. This enables the generation of statistically rigorous probabilistic forecasts for future climate states. All calibration experiments are performed with emulators trained using a maximum of one hundred model runs, in accord with typical resource restrictions imposed by computationally expensive models. We conclude by summarizing remaining issues to address in order to create a complete and validated operational methodology for objective calibration of computationally expensive models.  相似文献   
50.
Using the helium abundance measured by Galileo in the atmosphere of Jupiter and interior models reproducing the observed external gravitational field, we derive new constraints on the composition and structure of the planet. We conclude that, except for helium which must be more abundant in the metallic interior than in the molecular envelope, Jupiter could be homogeneous (no core) or could have a central dense core up to 12M. The mass fraction of heavy elements is less than 7.5 times the solar value in the metallic envelope and between 1 and 7.2 times solar in the molecular envelope. The total amount of elements other than hydrogen and helium in the planet is between 11 and 45M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号