首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   6篇
  国内免费   2篇
测绘学   4篇
大气科学   12篇
地球物理   63篇
地质学   99篇
海洋学   26篇
天文学   21篇
自然地理   30篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   12篇
  2010年   12篇
  2009年   13篇
  2008年   11篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   13篇
  2003年   8篇
  2002年   10篇
  2001年   12篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
121.
This letter deals with the backscattering of millimeter pulsed beam waves from hydrometeors. A new approach is presented for a solution of time-dependent three-dimensional vector radiative transfer equation for the Stokes vectors to study the multiple-scattering effects of beam waves on radar echoes. General solutions for beam waves are derived in an integral form without any approximation. They are given in numerically tractable forms representing the scattering process in the space and time domain. Time-dependent second-order solutions for radar echoes of pulsed beam waves are straightforwardly obtained to predict multiple-scattering effects depending on the variation of an incident beam size. It is shown that the inhomogeneity of the radial direction of beam waves causes the mode coupling of waves between the azimuth directions in the scattering matrix, and that the mode coupling depends on the ratio of the incident beam size to the total mean free path length of the medium  相似文献   
122.
The chaotic dynamics of the Rikitake two-disc dynamo system is studied for a wide range of parameters and results are compared with the sequence of geomagnetic polarity reversals. The chaos of the Rikitake system belongs to the Lorenz type, which is characterized by irregular travelling of an orbit between two unstable fixed points. Travelling corresponds to the polarity reversal. The frequency of the polarity reversals depends strongly on the parameter μ representing the resistive dissipation in the core. In the center of the chaotic regime, there is a parameter region in which reversals seldom occur and the dynamics is less disordered. The Markov entropy of the Lorenz map for the system has a sharp minimum in this parameter region named as the minimum entropy regime (M.E.R.). The average frequency of reversals in the M.E.R. is less than 0.1 per cycle of oscillation, but is not uniform even seen through a 10-m.y.-long window. The non-uniformity as well as the low rate of reversals in the M.E.R. markedly resemble the behavior of geomagnetic reversals over the past 153 m.y. It is suggested that the Earth selected the minimum entropy regime on the principle of the minimum entropy production, as is known to be the case for other dissipative dynamical systems.  相似文献   
123.
We have developed a workstation-assisted information processing system. The system has three major functions: information retrieval from seismic data, detection of earthquake precursors, and graphical display of relevant results. Fuzziness is inevitably involved in these functions, an adequate treatment of which is vital. The system accepts instructions given by a successive choice of words in hierarchal structure, which is followed by a tune-up of the corresponding membership function. The degrees of fuzziness in the outputs are recognized visually, for example, by coloring. This contrivance together with dynamic data exchange among the above functions facilitates the operation of the system. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 399–406, 1993. This study is partly supported by a project “Fuzzy systems and their applications to human and natural sciences” of Science and Technology Agency.  相似文献   
124.
Shock loading experiments on single crystal ilmenite (FeTiO3) are carried out up to peak pressures of 80 GPa using a newly built two-stage light gas gun. Shock effects are investigated by means of X-ray precission technique and Mössbauer spectroscopy. Shock effects are largely controlled by the anisotropic nature of the ilmenite structure. Considerable deformations are observed even in a pressure level of 30 GPa in the shocked crystal when the shock propagation direction is parallel to the c axis, whereas little effects are seen up to 55 GPa when the crystal is shocked parallel to the c plane (cleavage plane). The greatest deformation is introduced in the planes containing the c axis, while less remarkable effects are seen in the plane perpendicular to the c axis. Residual effects are favorably compared with the compression anomalies found in the Hugoniot measurements by King and Ahrens (1976). Mössbauer measurements also reveal that a fraction of highly disturbed regions increases with increasing shock loading pressure. These observations are explained in terms of current heterogeneous yielding model of brittle substances under shock loading, where internal fragmentation is preferentially formed so as to give c-platelet domains that are mutually misoriented with each other.  相似文献   
125.
Under hypothetical and idealized conditions, the horizontal site amplification factor (HSAF) is defined as the ratio of the horizontal Fourier amplitude spectrum (FAS) at a point on the Earth's surface with respect to the horizontal FAS at the identical location but on the outcropping seismological bedrock. The HSAF reflects the profile of local sedimentary soils and weathered rock formations, indicating site effects. In most cases, such an idealized HSAF is difficult to measure directly. Thus, quantitatively estimating a HSAF value is a crucial task in strong-motion prediction over the last century. Fortunately, many strong-motion stations have been constructed throughout Japan, facilitating the characterization of HSAFs down to seismological bedrock at more than 1600 observational sites by the generalized inversion technique (GIT). First, this study reported the similarity distribution of the HSAF and the horizontal-to-vertical spectral ratio of earthquakes (HVSRE). Subsequently, we proposed a hybrid method from a novel aspect for estimating HSAF in terms of the observed similarity distribution and the vertical amplification correction function (VACF) proposed previously. Compared with the direct use of HVSRE for substituting HSAF, the hybrid method proposed herein demonstrated an improvement of greater than 30% in terms of the residuals between estimated HSAFs and those separated from observations.  相似文献   
126.
127.
Since the 8th century, more than seventeen eruptions have been recorded for the Mt. Fuji volcano, with the most recent eruption occurring in 1707 (Hoei eruption). For the past 300 years the volcano has been in a quiescent stage and, since the early 1960s, has exhibited neither fumarolic nor thermal activity. However, the number of low-frequency earthquakes with a hypocentral depth of 10–20 km increased significantly beneath the northeastern flank of Mt. Fuji in 2000–2001, suggesting a possible resumption of magmatic activity. In this study, diffuse CO2 efflux and thermal surveys were carried out in four areas of the volcano in 2001–2002 in order to detect possible signs of the upward movement of deep magma. At all survey points, the CO2 efflux was below the detection limit with the exception of a few points with biological CO2 emission, and ground temperatures at a depth of 20–30 cm were below ambient, indicating no surface manifestations of gas or heat emission. Should magma rise into the subsurface, the diffuse CO2 efflux would be expected to increase, particularly along the tectonically weakened lineation on the Mt. Fuji volcano, allowing for the early detection of pre-eruptive degassing.  相似文献   
128.
129.
A coupled climate–carbon cycle model composed of a process-based terrestrial carbon cycle model, Sim-CYCLE, and the CCSR/NIES/FRCGC atmospheric general circulation model was developed. We examined the multiple temporal scale functions of terrestrial ecosystem carbon dynamics induced by human activities and natural processes and evaluated their contribution to fluctuations in the global carbon budget during the twentieth century. Global annual net primary production (NPP) and heterotrophic respiration (HR) increased gradually by 6.7 and 4.7%, respectively, from the 1900s to the 1990s. The difference between NPP and HR was the net carbon uptake by natural ecosystems, which was 0.6 Pg C year?1 in the 1980s, whereas the carbon emission induced by human land-use changes was 0.5 Pg C year?1, largely offsetting the natural terrestrial carbon sequestration. Our results indicate that monthly to interannual variation in atmospheric CO2 growth rate anomalies show 2- and 6-month time lags behind anomalies in temperature and the NiNO3 index, respectively. The simulated anomaly amplitude in monthly net carbon flux from terrestrial ecosystems to the atmosphere was much larger than in the prescribed air-to-sea carbon flux. Fluctuations in the global atmospheric CO2 time series were dominated by the activity of terrestrial vegetation. These results suggest that terrestrial ecosystems have acted as a net neutral reservoir for atmospheric CO2 concentrations during the twentieth century on an interdecadal timescale, but as the dominant driver for atmospheric CO2 fluctuations on a monthly to interannual timescale.  相似文献   
130.
We developed a multi-trophic level ecosystem model by coupling physical, biogeochemical-plankton and fish models. An oceanic general circulation model was coupled with a lower trophic level ecosystem model and a Japanese sardine migration model, and applied to the western North Pacific. To investigate the impact of global warming on the pelagic fish ecosystem, such as Japanese sardine, we conducted numerical experiments of growth and migration of Japanese sardine using physical fields for the present day and future with a global warming scenario simulated by a high-resolution climate model. The model results demonstrated possible impacts of global warming on the growth and migration pattern of Japanese sardine. The growths of fish in the current main spawning region under the global warming scenario were significantly slower than those under the present climate scenario. Fish in this region will be at disadvantage for their recruitment under the global warming condition. Prey conditions in the spawning region were projected not to markedly change under global warming condition while water temperature increased. As a result sardine spawning ground was projected to shift towards more north areas. During the feeding migration period in summer, geographical distribution of juveniles fish was projected to shift northwards by one to two degrees latitude under the global warming condition following the change in the distribution of optimal temperature region for feeding. However, this northwards shift of the optimal temperature for feeding was minimized adjacent to the western North Pacific by the cooler water supply by the intensification of the Oyashio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号