排序方式: 共有20条查询结果,搜索用时 13 毫秒
11.
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4?C6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5?±?1.3?×?10?C8 cm2?s?C1 at 21°C, compared to previously published diffusion coefficients of 1.2?×?10?C18 cm2?s?C1 (21°C) to 3.0?×?10?C15 cm2?s?C1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (??3%) and tortuosity (??6?C13) produces effective diffusion coefficients of 1?×?10?C8 cm2?s?C1 (21°C) and 1?×?10?C7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8?±?0.4% (SD, n?=?4) and mudstones 3.1?±?0.8% (SD, n?=?4). 相似文献
12.
Rethinking the longitudinal stream temperature paradigm: region‐wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures 下载免费PDF全文
Aimee H. Fullerton Christian E. Torgersen Joshua J. Lawler Russell N. Faux E. Ashley Steel Timothy J. Beechie Joseph L. Ebersole Scott G. Leibowitz 《水文研究》2015,29(22):4719-4737
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients 总被引:6,自引:0,他引:6
Carl H. Lamborg William F. FitzgeraldJames O’Donnell Thomas Torgersen 《Geochimica et cosmochimica acta》2002,66(7):1105-1118
A box model of mercury (Hg) cycling between the atmosphere and ocean is described and used to estimate Hg fluxes on a global scale (The Global/Regional Interhemispheric Mercury Model, GRIMM). Unlike previous simulations of this system, few assumptions are made concerning the rate of prominent marine biogeochemical processes affecting Hg (e.g., evasion, particle scavenging, and deep ocean burial). Instead, consistency with two observed atmospheric distributions was required: the interhemispheric gradient in total atmospheric Hg and the value for changes in the deposition of Hg from the atmosphere since industrialization observed in both hemispheres. Sensitivity analyses underscore the importance to modeling of the atmospheric lifetime of Hg, the magnitude of the interhemispheric gradient, the historical changes in Hg concentrations of various reservoirs, and vertical exchange between the surface ocean and the permanent thermocline. Results of the model indicate: lower evasional fluxes of Hg from the global ocean than previous estimates; a prominent role for particle scavenging as a removal mechanism from the surface ocean; a modest influence of dry processes (dust and gas) on Hg removal from the atmosphere; and an estimate of natural land-based sources of Hg to the atmosphere that is no more than about half that of anthropogenic sources. 相似文献
14.
Anne A. Weekes Christian E. Torgersen David R. Montgomery Andrea Woodward Susan M. Bolton 《水文研究》2015,29(3):356-372
Few systematic studies of valley‐scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional‐scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse‐grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and ‘rock‐ice’ features may have more storage capacity than previously thought. To better evaluate potential differences in streamflow response among basins with extensive coarse depositional features and those without, we examined the relationships between streamflow discharge, stable isotopes, water temperature and the amplitude of the diurnal signal at five basin outlets. We also quantified the percentages of colluvial channel length measured along the stepped longitudinal profile. Colluvial channels, characterized by the presence of surficial, coarse‐grained depositional features, presented sediment‐rich, transport‐limited morphologies that appeared to have a cumulative effect on the timing and volume of flow downstream. Measurements taken from colluvial channels flowing through depositional landforms showed median recession constants (Kr) of 0.9–0.95, δ18O values of ≥?14.5 and summer diurnal amplitudes ≤0.8 as compared with more typical surface water recession constant values of 0.7, δ18O ≤ ?13.5 and diurnal amplitudes >2.0. Our results demonstrated strong associations between the percentage of colluvial channel length within a catchment and moderated streamflow regimes, water temperatures, diurnal signals and depleted δ18O related to groundwater influx. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/222Rn ages 总被引:1,自引:0,他引:1
Thomas Torgersen 《Journal of Geochemical Exploration》1980,13(1):57-75
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested. 相似文献
16.
Rapid and precise measurement method for adsorbed
A new method has been developed for the determination of adsorbed
on sediments. The method utilizes sediments directly in a closed loop counting system and measures the daughter
. Because the recoil path length of
is small compared to the sediment particle size, adsorbed
is released to the gases circulating in the closed loop
counting system and
produced internally within the sediment particles is effectively excluded. The method has been calibrated against (1) multi-step Na+ displacement of
and (2) multi-step Zn2+ replacement of
. It has been found to accurately quantify the adsorbed component with a significant savings in laboratory time and with greater precision. Combined with dissolved
measurements of the porewater, distribution coefficients can be accurately calculated. This method has potential for direct application to water column
balances in estuaries, coastal water and salt marshes. When used to extract the reactive transport dynamics of
in the sediment, the method may have applications to trace metal transport in sediments. 相似文献
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
Full-size image
17.
18.
A model of 4He accumulation in a confined aquifer is presented which includes in situ production and a crustal degassing flux of 4He into the bottom of a confined aquifer. The model is consistent with the measurements of 4He concentration in the Great Artesian Basin, Australia (Torgersen and Clarke, 1985) and also with the measurements of 4He concentration in the Auob Sandstone of Namibia (Heaton, 1981). The measured value of the crustal degassing flux of 4He from these two areas is comparable with the 4He degassing flux calculated from the atmospheric budget of 4He (Wasserburget al., 1963; Ozima and Podosek, 1983). A literature review suggests that a crustal degassing 4He source may account for the 4He accumulation in many other groundwater systems. It is concluded from the literature review, the detailed modelling of 4He accumulation in GAB and the Auob Sandstone, and the atmospheric budget that crustal degassing of 4He may be a common and widespread phenomena. 相似文献
19.
The distribution of trace metals in sediments and their exchange between sediments and overlying water is governed by multiple processes including molecular diffusion, bioturbation (porewater advection, porewater mixing, and particle mixing), chemical reactions and adsorption–desorption. To understand these processes and their relative contributions, a one-dimensional model was built, which includes bioturbation and adsorption–desorption processes, to describe the transport of 224Ra. Because 224Ra is adsorbed on MnO2, 224Ra may serve as a proxy for trace metal transport. Three sites were sampled and both dissolved and adsorbed 224Ra were analyzed and modeled to understand the transport and exchange processes. It was found that particle transport of adsorbed 224Ra followed by desorption at the sediment/water interface typically represents the dominant flux. We have further been able to define conditions where the porewater transport for adsorption reactive metals like 224Ra (and other metals) may be out of the sediments whereas the active scavenging of 224Ra from the water column at the sediment water interface via adsorption reactions can result in a flux of 224Ra into the sediment. These processes are both predicted by the model and observed in sediment samples. 相似文献
20.