首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   4篇
大气科学   6篇
地球物理   22篇
地质学   14篇
海洋学   20篇
天文学   29篇
综合类   1篇
自然地理   4篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   6篇
  2009年   2篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1976年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
21.
In this study, we aimed to clarify spatial variations in xylem sap flow, and to determine the impacts of these variations on stand‐scale transpiration (E) estimates. We examined circumferential and radial variations in sap flow velocity (Fd) measured at several directions and depths in tree trunks of black locust (Robinia pseudoacacia) and native oak (Quercus liaotungensis), both of which have ring‐porous wood anatomy, in forest stands on the Loess Plateau, China. We evaluated the impacts of circumferential variations in Fd on stand‐scale transpiration estimates using a simple scaling exercise. We found significant circumferential variations in Fd in the outermost xylem in both species (coefficients of variation = 20–45%). For both species, Fd measured at the inner xylem was smaller than that of the outermost xylem and the Fd at the depth of > 10 mm was almost zero. The simple exercises showed that omitting circumferential variations in Fd affected the E estimate by 16–21%, which was less than the effects of omitting within‐tree radial and tree‐to‐tree variations in Fd in both species. These results suggest that circumferential variations in Fd can be a minor source of error for E estimates compared with within‐tree radial and tree‐to‐tree variations in Fd, regardless of the significant circumferential variations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
22.
The root system of forest trees account for a significant proportion of the total forest biomass. However, data is particularly limited for forests in permafrost regions. In this study, therefore, we estimated the above- and belowground biomass of a black spruce (Picea mariana) stand underlain with permafrost in interior Alaska. Allometric equations were established using 4–6 sample trees to estimate the biomass of the aboveground parts and the coarse roots (roots >5 mm in diameter) of P. mariana trees. The aboveground biomass of understory plants and the fine-root biomass were estimated by destructive sampling. The aboveground and coarse-root biomasses of the P. mariana trees were estimated to be 3.97 and 2.31 kg m?2, respectively. The aboveground biomass of understory vascular plants such as Ledum groenlandicum and the biomass of forest floor mosses and lichens were 0.10 and 0.62 kg m?2, respectively. The biomass of fine roots <5 mm in diameter was 1.27 kg m?2. Thus, the above- and belowground biomasses of vascular plants in the P. mariana stand were estimated to be 4.07 and 3.58 kg m?2, respectively, indicating that belowground biomass accounted for 47% of the total biomass of vascular plants. Fine-root biomass was 36% of the total root biomass, of which 90% was accumulated in the surface organic layer. Thus, this P. mariana stand can be characterized as having extremely high belowground biomass allocation, which would make it possible to grow on permafrost with limited soil resource availability.  相似文献   
23.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   
24.
25.
There is a growing opinion that poorly managed plantation forests in Japan are contributing to increased storm runoff and erosion. Here we present evidence to the contrary from runoff plots at two scales (hillslope and 0·5 × 2 m plots) for several forest conditions in the Mie and Nariki catchments. Runoff coefficients from small plots in untended hinoki forests were variable but typically higher than from better managed or deciduous forests during small storms at Nariki; at Mie, runoff during small events was highly variable from all small plots but runoff coefficients were similar for hinoki plots with and without understory vegetation, while the deciduous plot had lower runoff coefficients. Storm runoff was less at the hillslope scale than the plot scale in Mie; these results were more evident at sites with better ground cover. During the largest storms at both sites, differences in runoff due to forest condition were not evident regardless of scale. Dynamic soil moisture tension measurements at Nariki indicated that during a large storm, flow in the upper organic‐rich and root‐permeated soil horizons was 3·2 times higher than measured overland runoff from a small hinoki plot with poor ground cover and 8·3 times higher than runoff from a deciduous forest plot. On the basis of field observations during storms, at least a portion of the monitored ‘Hortonian overland flow’ was actually occurring in this near‐surface ‘biomat’. Therefore our field measurements in both small and large plots potentially included biomat flow in addition to short‐lived Hortonian runoff. Because overland flow decreased with increasing scale, rill erosion did not occur on hillslopes. Additionally, runoff coefficients were not significantly different among cover conditions during large storms; thus, the ‘degraded’ forest conditions appear not to greatly enhance peak flows or erosion potential at larger scales, especially when biomat flow is significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
26.
Size-separated aerosol number concentrations and water-soluble constituents were measured in Toyama, the Hokuriku district, near the coast of the Japan Sea, during the spring and summer in 2003. The number concentrations of coarse particles were significantly high in April, which was due to Asian dust events called Kosa in Japanese. Particulate nssCa2+, which is mostly present in the coarse-mode particles, was significantly high in April. On the other hand, the concentrations of NH4+ and nssSO42−, which mainly exist as the accumulation-mode particles were not high in April. The mass-size distributions of water-soluble constituents were compared with the size-separated number concentrations of particles. Backward trajectory analysis was also employed to examine the transport process of the air mass in Toyama.  相似文献   
27.
In order to examine latitudinal distribution and seasonal change of the surface oceanic fCO2, we analyzed the data obtained in the North Pacific along 175°E during the NOPACCS cruises in spring and summer of 1992–1996. Except for around the equator where the fCO2 was significantly affected by the upwelling of deep water, the latitudinal distribution of fCO2 showed distinctive seasonal variation. In the spring, the fCO2 decreased and then increased going southward with the minimum value of about 300 µatm around 35°N, while in the summer, the fCO2 displayed high variability, showing minimum and maximum values at latitudes of around 44° and 35°N, respectively. It was also found that the fCO2 was well correlated with the SST, but the relationship between the two was different for different hydrographic regions. In the subpolar gyre, the frontal regions between the Water-Mass Front and the Kuroshio bifurcation front, and between the Kuroshio bifurcation front and the Kuroshio Extension current, SST, DIC and TA influenced the seasonal fCO2 change through seasonally-dependent biological activities and vertical mixing and stratification of seawater. In the central subtropical gyre and the North Equatorial current, the seasonal fCO2 change was found to be produced basically by changes in SST and DIC. The summertime oceanic fCO2 generally increased with time over the period covered by this study, but the increased rate was clearly higher than those expected from other measurements in the western North Pacific.  相似文献   
28.
Using an eddy-resolving two layer primitive-equation model forced by symmetric wind stress, we investigate the asymmetry of the recirculation of a double gyre (subpolar gyre and subtropical gyre). In the case where the layer thickness change is large, cyclonic recirculation becomes unstable and splits into meso-scale vortices more easily than anti-cyclonic recirculation in their developing stage. The subpolar gyre is, therefore, filled with more vortices than the subtropical gyre. Moreover, the effect of the upper layer potential vorticity on the lower layer potential vorticity in the subpolar gyre is stronger than that in the subtropical gyre. The characteristic of turbulence in the subpolar gyre is different from that found in the subtropical gyre and, therefore, the asymmetry of the recirculation of the double gyre is maintained by this difference. The asymmetry can not be produced in a quasi-geostrophic model because it ignores the nonlinearity associated with layer thickness change. Moreover, we investigate the effects of layer thickness and lateral viscosity on the asymmetry of the recirculation of the double gyre. In the case of realistic physical parameters, the asymmetry of the recirculation of the double gyre is noticeable from the view of the activities of the eddies. In the case with the shallowest upper layer, the position of separation of the western boundary current moves further southward.  相似文献   
29.
Coastal erosion is becoming an increasingly serious consequence of climate change. This study demonstrates the effects of coastal erosion on landslide activity while considering the amount of erosion and changes in pore water pressure. To determine the factors related to landslide slip generation, we specifically measured the displacement, deformation, pore water pressure, and amount of erosion with high temporal resolution (1 s–1 h) for a coastal landslide in Hokkaido, north-eastern Japan, for 7 months. It has been determined that landslides occur simultaneously with high pore water pressure. Toe erosion events also occurred several times, while the landslide exhibited major displacement. Because toe erosion and the increase in pore water pressure occurred simultaneously, we tried to determine which of the two contributed majorly to the landslide displacement by conducting a stability analysis that incorporates the effects of the two factors. From the actual observed data, toe erosion and the increase in pore water pressure had comparable effects on the destabilization of the studied landslide. Specifically, the time series for the safety factor shows that the landslide in the case with toe erosion was destabilized more than that in the case with no erosion, with a difference of more than 5% in the safety factor. The model with toe erosion provided a better explanation for the landslide displacement. Furthermore, the inclination data suggested that erosion took place at least 1 month before the landslide displacement. This implied that coastal erosion played a role in the preparation and ongoing displacement of the coastal landslide. Inland landslides with toes that are subject to undercutting due to river incision or artificial construction have geomorphological settings that are similar to those of the studied landslide. The knowledge obtained here can contribute to the understanding of destabilization mechanisms and terrain changes related to such landslides. © 2020 John Wiley & Sons, Ltd.  相似文献   
30.
Physics and Chemistry of Minerals - A black tourmaline sample from Seagull batholith (Yukon Territory, Canada) was established to be a schorl with concentrations of Fe2+ among the highest currently...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号