首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   10篇
  国内免费   1篇
测绘学   5篇
大气科学   22篇
地球物理   84篇
地质学   118篇
海洋学   38篇
天文学   50篇
综合类   1篇
自然地理   17篇
  2021年   4篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   13篇
  2015年   7篇
  2014年   8篇
  2013年   23篇
  2012年   14篇
  2011年   28篇
  2010年   16篇
  2009年   25篇
  2008年   28篇
  2007年   17篇
  2006年   31篇
  2005年   15篇
  2004年   18篇
  2003年   9篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1983年   2篇
  1981年   1篇
  1972年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
131.
132.
Following an intersection of rising magma with drifts of the potential Yucca Mountain nuclear waste repository, a pathway is likely to be established to the surface with magma flowing for days to weeks and affecting the performance of engineered structures located along or near the flow path. In particular, convective circulation could occur within magma-filled drifts due to the exsolution and segregation of magmatic gas. We investigate gas segregation in a magma-filled drift intersected by a vertical dyke by means of analogue experiments, focusing on the conditions of sustained magma flow. Degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup, or by aerating golden syrup, producing polydisperse bubbly mixtures with 40% of gas by volume. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the dyke and the drift that leads to gas segregation. Bubbles segregate from the magma by rising and accumulating as a foam at the top of the drift, coupled with the accumulation of denser degassed magma at the base of the drift. Steady-state influx of bubbly magma from the dyke into the drift is balanced by outward flux of lighter foam and denser degassed magma. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal drift. Steady-state gas segregation would be accomplished within hours to hundreds of years depending on the viscosity of the degassed magma and the average size of exsolved gas bubbles, and the resulting foam would only be a few cm thick. The exchange flux of bubbly magma between the dyke and the drift that is induced by gas segregation ranges from 1 m3 s−1, for the less viscous magmas, to 10−8 m3 s−1, for the most viscous degassed magmas, with associated velocities ranging from 10−1 to 10−9 m s−1 for the same viscosity range. This model of gas segregation also predicts that the relative proportion of erupted degassed magma, that could potentially carry and entrain nuclear waste material towards the surface, would depend on the value of the dyke magma supply rate relative to the value of the gas segregation flux, with violent eruption of gassy as well as degassed magmas at relatively high magma supply rates, and eruption of mainly degassed magma by milder episodic Strombolian explosions at relatively lower supply rates.  相似文献   
133.
A direct method for the determination of lead isotopic ratios by laser ablation-inductively coupled plasma-quadrupole mass spectrometry (LA-ICP-QMS) is presented. Samples of lake sediments were ground and pressed as pellets before being analysed. Mass bias was corrected by analysing an external calibration sample manufactured with pure silica doped with NIST SRM 981 solution. The efficiency of the mass bias correction was checked by comparing the ICP-MS data with lead isotopic ratios determined by thermal ionisation mass spectrometry (TIMS). The average long term reproducibilities were 0.40%, 0.40%, 0.20% and 0.30% (RSD) respectively for the 206Pb/204Pb, 207Pb/204Pb, 206Pb/207Pb and 208Pb/206Pb ratios. The method was applied to the study of lake sediment samples, in order to determine the amount and origin of historical contamination by lead.  相似文献   
134.
135.
After the mean anomaly has been removed from the perturbations, the reduced Hamiltonian becomes a function over the Lie algebra determined by the infinitesimal generators associated with the dynamical symmetries of an unperturbed Keplerian system. The phase space being now the group SO(3), average motions consist of rotations, and the normalized Hamiltonian serves as a Morse function whose critical points determine the intrinsic topology of the perturbed system.  相似文献   
136.
137.
138.
Many oceanographic applications require the positioning of the underwater sensor at measurement times. We consider here the case of subsurface moored tomographic instruments, where the distance between source and receiver must be known within a few meters. For that purpose, a long baseline array is deployed: this system includes a navigator, attached to the mooring element and an array of three transponders set on the ocean bottom. To process the navigation data collected with such system, we have developed a method based on optimal estimation. The triangulation problem is not a basic spherical constraints one and the specificity of deep underwater positioning, related to the variability of the ocean sound speed profile are pointed out. Correcting terms are proposed and introduced into the system. Simultaneous inversion of all data, defining an overconstrained problem allows to estimate biases and errors. The algorithm is applied here to a dataset collected in the Azores-Canary basin during CAMBIOS experiment.  相似文献   
139.
Side-scan sonar investigations in the eastern part of the macrotidal Bay of Seine have revealed the presence of numerous rippled scour depressions (RSDs) at water depths of 5–9 m. The sediments in these depressions consist essentially of coarse-grained shell hash derived from underlying Holocene sediments dated at roughly 6,500 years BP, and arranged in large wave-generated ripples. The shallow marine area where these features occur consists of a wave-generated ravinement surface produced during the marine flooding of the late Holocene transgression. It can be shown that, during the last 20 years at least, erosion of the muddy sand and sandy seabed has exposed underlying relict sediments. These consist of stiff clays, silts and a layer of shell debris which, when exposed, cover the bottom of large scour depressions which appear to be in equilibrium with the local hydrodynamic regime. Morphological and hydrodynamic data suggest that the RSDs are generated by strong cross-shore bottom currents flowing parallel to the features in the direction of the prevailing waves, and probably associated with storm-induced downwelling events.  相似文献   
140.
Large-scale mass redistribution in the terrestrial water storage (TWS) leads to changes in the low-degree spherical harmonic coefficients of the Earth’s surface mass density field. Studying these low-degree fluctuations is an important task that contributes to our understanding of continental hydrology. In this study, we use global GNSS measurements of vertical and horizontal crustal displacements that we correct for atmospheric and oceanic effects, and use a set of modified basis functions similar to Clarke et al. (Geophys J Int 171:1–10, 2007) to perform an inversion of the corrected measurements in order to recover changes in the coefficients of degree-0 (hydrological mass change), degree-1 (centre of mass shift) and degree-2 (flattening of the Earth) caused by variations in the TWS over the period January 2003–January 2015. We infer from the GNSS-derived degree-0 estimate an annual variation in total continental water mass with an amplitude of \((3.49 \pm 0.19) \times 10^{3}\) Gt and a phase of \(70^{\circ } \pm 3^{\circ }\) (implying a peak in early March), in excellent agreement with corresponding values derived from the Global Land Data Assimilation System (GLDAS) water storage model that amount to \((3.39 \pm 0.10) \times 10^{3}\) Gt and \(71^{\circ } \pm 2^{\circ }\), respectively. The degree-1 coefficients we recover from GNSS predict annual geocentre motion (i.e. the offset change between the centre of common mass and the centre of figure) caused by changes in TWS with amplitudes of \(0.69 \pm 0.07\) mm for GX, \(1.31 \pm 0.08\) mm for GY and \(2.60 \pm 0.13\) mm for GZ. These values agree with GLDAS and estimates obtained from the combination of GRACE and the output of an ocean model using the approach of Swenson et al. (J Geophys Res 113(B8), 2008) at the level of about 0.5, 0.3 and 0.9 mm for GX, GY and GZ, respectively. Corresponding degree-1 coefficients from SLR, however, generally show higher variability and predict larger amplitudes for GX and GZ. The results we obtain for the degree-2 coefficients from GNSS are slightly mixed, and the level of agreement with the other sources heavily depends on the individual coefficient being investigated. The best agreement is observed for \(T_{20}^C\) and \(T_{22}^S\), which contain the most prominent annual signals among the degree-2 coefficients, with amplitudes amounting to \((5.47 \pm 0.44) \times 10^{-3}\) and \((4.52 \pm 0.31) \times 10^{-3}\) m of equivalent water height (EWH), respectively, as inferred from GNSS. Corresponding agreement with values from SLR and GRACE is at the level of or better than \(0.4 \times 10^{-3}\) and \(0.9 \times 10^{-3}\) m of EWH for \(T_{20}^C\) and \(T_{22}^S\), respectively, while for both coefficients, GLDAS predicts smaller amplitudes. Somewhat lower agreement is obtained for the order-1 coefficients, \(T_{21}^C\) and \(T_{21}^S\), while our GNSS inversion seems unable to reliably recover \(T_{22}^C\). For all the coefficients we consider, the GNSS-derived estimates from the modified inversion approach are more consistent with the solutions from the other sources than corresponding estimates obtained from an unconstrained standard inversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号