首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   6篇
  国内免费   6篇
测绘学   3篇
大气科学   14篇
地球物理   36篇
地质学   43篇
海洋学   11篇
天文学   29篇
综合类   2篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   3篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   4篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
141.
Tracer transport in the atmosphere is controlled not only by synoptic-scale to mesoscale weather disturbances but also by microscale boundary-layer processes especially under fair-weather conditions. The present study investigates numerically the diurnal variation of boundary-layer convection and cumulus clouds and their role in transporting tracers by conducting high-resolution simulations that explicitly resolve turbulent eddies. The transport of dust aerosols in a desert area under two distinct stability conditions is specifically examined. Convection plays a significant role in transporting dust upward; in other words, the vertical depth of the dust transport is critically determined by the depth of convection. Deep convection is effective in transporting dust into the free atmosphere. The early morning stratification strongly regulates the temporal evolution and the vertical growth of convection and therefore the amount of tracer emission and transport. A sensitivity to model resolution of O (1 km) in a cloud-resolving simulation range is also examined. A proper parameterization for activating microscale convection is required for representing the diurnal variation of convection and tracer transport.  相似文献   
142.
Notches cut by waves are currently developing at the base of vertical coastal limestone cliffs in Okinawa, Japan. The cliff height varies from 3.0–22.1 m, and the maximum notch depth is 8.8 m. Many rectangular or cubic blocks, which appear to have originated from cliff failures, are found on platforms in front of the cliffs. On the flat top surface of the cliff, tension cracks often run parallel to the cliff face. The vertical face of the cliffs displays small undulations but no sliding striation, suggesting that cliff failures have been caused by toppling rather than by shearing or sliding. We use slope stability analysis to determine the critical condition for toppling failure. Physical and mechanical properties of the cliff material were first obtained from laboratory tests. The results indicate that the strength of limestone shows a scale effect, such that the strength decreases with increasing size of the test specimens. Based on this result, we estimated the strength of a rock mass corresponding to the size of the coastal cliff. Cliff stability was then analyzed using a cantilever beam model. Comparison of the stability analysis and the dimension of fallen blocks indicates that toppling failure is strongly associated with the development of notches and tension cracks.  相似文献   
143.
To achieve the sustainable use of dams, the development of methods for sediment management in reservoirs is required. One such method includes the use of Sediment Bypass Tunnels (SBTs) to divert sediment around a dam, thereby preventing sedimentation in the reservoir. However, SBTs are prone to severe invert abrasion caused by the high sediment flux. Therefore, it is necessary to establish a measurement system of the sediment transport rate in these tunnels. One system to measure sediment transport in rivers is the Swiss plate geophone, which can register plate vibrations caused by particle impact. In Japan, the Japanese pipe microphone is used, and sediment transport is measured based on the sound emitted by the particle impact. In this study an attempt was made to optimize the advantages of both systems by fixing a microphone and an acceleration sensor to a steel plate. The results of calibration experiments with this new system are presented and compared with the existing methods. It was found that the acceleration sensor can detect sediment particles larger than 2 mm in diameter. Moreover, a new parameter, referred to as the detection rate, was introduced to describe the correlation between the actual amount of sediment and the registered output. Finally, two parameters - the saturation rate and hit rate - are introduced and exhibit strong correlation with the detection rate.  相似文献   
144.
The influence of non‐spectral matrix effects on the determination of twenty‐two trace elements (Rb, Sr, Y, Cs, Ba, lanthanides, Pb, Th and U) in rock samples using ICP‐MS was investigated. Three types of multi‐element solutions were synthesised containing the twenty‐two trace elements, In, Tl and ten major rock‐forming elements with varying mass fractions mimicking the compositions of basalt, peridotite and dolomite. The synthetic solutions were conditioned to have dilution factors (DF) of 1000–10000. The extent of sensitivity suppression relative to the DF = 10000 solution became more significant for smaller DF solutions, which was not constant across different elements in a single solution but displayed general dependence on m/z. This indicates that at least two internal standards (e.g., In and Tl) are required for the correction of sensitivity variation. On the basis of the results, a new isotope dilution‐internal standardisation method for the determination of twenty‐two trace elements with ICP‐MS was developed, in which the sensitivity variation was corrected by monitoring two enriched isotopes, 113In and 203Tl. This method, coupled with the quantitative correction of interference from oxides and hydroxides, achieved precise determination of twenty‐two trace elements in some rock reference materials with reproducibilities of ±2% for basaltic to andesitic samples.  相似文献   
145.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号