首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
大气科学   9篇
地球物理   2篇
地质学   2篇
海洋学   20篇
自然地理   30篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2002年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有63条查询结果,搜索用时 296 毫秒
11.

The Indonesian throughflow (ITF) transports a significant amount of warm freshwater from the Pacific to the Indian Ocean, making it critical to the global climate system. This study examines decadal ITF variations using ocean reanalysis data as well as climate model simulations from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). While the observed annual cycle of ITF transport is known to be correlated with the annual cycle of sea surface height (SSH) difference between the Pacific and Indian Oceans, ocean reanalysis data (1959–2015) show that the Pacific Ocean SSH variability controls more than 85% of ITF variation on decadal timescales. In contrast, the Indian Ocean SSH variability contributes less than 15%. While those observed contributions are mostly reproduced in the CMIP5 historical simulations, an analysis of future climate projections shows a 25–30% increase in the Indian Ocean SSH variability to decadal ITF variations and a corresponding decrease in the Pacific contribution. These projected changes in the Indian Ocean SSH variability are associated with a 23% increase in the amplitudes of negative zonal wind stress anomalies over the equatorial Indian Ocean, along with a 12º eastward shift in the center of action in these anomalies. This combined effect of the increased amplitude and eastward shift in the zonal wind stress increases the SSHA variance over the Indian Ocean, increasing its contribution to the ITF variation. The decadal ITF changes discussed in this study will be crucial in understanding the future global climate variability, strongly coupled to Indo-Pacific interactions.

  相似文献   
12.
We measured dissolved isoprene (2-methyl-1,3-butadiene; C5H8) concentrations in a broad area of the southern Indian Ocean and in the Indian sector of the Southern Ocean from 35°S to 64°S and from 37°E to 111°E during austral summer 2010–2011. Isoprene concentrations were continuously measured by use of a proton-transfer-reaction mass spectrometer combined with a bubbling-type equilibrator. Concentrations of isoprene and its emission flux throughout the study period ranged from 0.2 to 395 pmol L?1 and from 181 to 313 nmol m?2 day?1, respectively, the averages being generally higher than those of previous studies. Although we found a significant linear positive relationship between isoprene and chlorophyll-a concentrations (r 2 = 0.37, n = 36, P < 0.001), the correlation coefficient was lower than previously reported. In contrast, in the high-latitude area (>53°S) we identified a significant negative correlation (r 2 = 0.59, n = 1263, P < 0.001) between isoprene and the temperature-normalized partial pressure of carbon dioxide (n-pCO2), used as an indicator of net community production in this study. This suggests that residence times and factors controlling variations in isoprene and n-pCO2 are similar within a physically stable water column.  相似文献   
13.
The waveform inversion method described in Woodhouse & Dziewonski (1984) was modified to retrieve regional scale 3-D heterogeneities by using the minor arc part of seismograms. The lateral heterogeneities are expanded horizontally into blocks (10°× 10°) and radially into Legendre polynomials up to order 3 (0–670 km), and thus the results show much fine details of lateral variation than previous global scale studies. We assumed that the heterogeneities produce the perturbation of eigenfrequencies which are the minor arc average of local eigenfrequency shift. We applied the method to the upper mantle beneath the Atlantic Ocean and its environments. Care was taken about the weighting of the data set. We found that the fit of each seismogram became better when the weighting of each seismogram is proportional to the inverse of initial data residuals. Resolution is good in the triangular region surrounded by South America, Europe, and North America. Resolution is not good in the South Atlantic because of the poor path coverage. Depth resolution is not clear, because of the use of Legendre polynomials, though the results suggest a broad half-width of the order of 200 km or more. We found some similarities between previous global studies and our results. For example, low velocities beneath the East Pacific Rise, Chile Rise and Azores triple junction and a high velocity Canadian shield are obtained. However, there are also differences; the high-velocity zone beneath the Brazilian shield at shallow depth is not a prominent feature in this study. Instead, we found a somewhat unexpected feature near the Romanche and Vema fracture zones where shallow positive anomalies exist. Smoothed results calculated by the spherical harmonic expansion are also shown for the purpose of comparison with global studies.  相似文献   
14.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   
15.
Summary. Phase velocity variations obtained in the previous paper are inverted by the Backus–Gilbert method for the velocity structure of the upper mantle. Spheroidal modes and toroidal modes in the period range of 125–260 s are used in the inversion. The data cannot constrain all six parameters in a transversely isotropic medium and we chose to perturb only two parameters, SH and SV velocities. SV velocities are resolved between the depths of about 200 and 400 km and SH velocities between 0 and 200 km. Resolution kernels have half-peak widths of about 200–300 km in depth, becoming broader for deeper target depths. SV velocity kernels show secondary peaks near the surface of the Earth, with widths varying from 50 to 100 km. The deeper the target depths, the wider the secondary peaks near the surface. SH velocity kernels do not possess such secondary peaks. The trade-off between SV and SH velocities is small. SV velocity is essentially determined by spheroidal modes and SH velocity by toroidal modes. Because of the broad width of the resolution kernels, the structure in the resolved region is difficult to detect from our data set; for example the differences in SV velocity structure between 250 and 350 km or the differences in SH velocity between 100 and 200 km are difficult to distinguish. Considering the horizontal resolution of about 2000 km, obtained in the previous paper, averaging kernels for 3-D structure are quite elongated in the horizontal dimension.  相似文献   
16.
Summary. A new method of moment tensor inversion is developed, which combines surface wave data and P -wave first motion data in a linear programming approach. Once surface wave spectra and first motion data are given, the method automatically obtains the solution that satisfies first motion data and minimizes the L1 norm of the surface wave spectra. We show the results of eight events in which the method works and is stable even for shallow events. We also show one event in which surface wave data and P -wave first motion data seem to be incompatible. In such cases, our method does not converge or converges to a solution which has a large minor (second) double couple component. It is an advantage that the method can determine the compatibility of two data sets without trial and error.
Laterally heterogeneous phase velocity corrections are used to obtain spectra at the source. The method is also applied to invert moment tensors of eight events in two recent three-dimensional (3-D) upper mantle structures. In both 3-D models, variances of spectra are smaller than those in a laterally homogeneous model at 256 s. Statistical tests show that those reductions are significant at a high confidence level for five events out of eight examined. For three events, we examined those reductions at shorter periods, 197 and 151 s. The reduction of variances is comparable to the results at 256 s and is again statistically significant at a high confidence level. Orientation of fault planes does not change very much by incorporation of lateral variations of phase velocity or by doing inversions at different periods. This is mainly because of the constraints from P -wave first motion data. Scatter of phase spectra at shorter periods, especially at 151 s, is great and suggests that surface wave ray paths deviate from great circle paths substantially and these effects cannot be ignored.  相似文献   
17.
The objective of the present study is to develop a volume of fluid (VOF)-based two-phase flow model and to discuss the applicability of the model to the simulation of wave–structure interactions. First, an overview of the development of VOF-type models for applications in the field of coastal engineering is presented. The numerical VOF-based two-phase flow model has been developed and applied to the simulations of wave interactions with a submerged breakwater as well as of wave breaking on a slope. Numerical results are then compared with laboratory experimental data in order to verify the applicability of the numerical model to the simulations of complex interactions of waves and permeable coastal structures, including the effects of wave breaking. It is concluded that the two-phase flow model with the aid of the advanced VOF technique can provide with acceptably accurate numerical results on the route to practical purposes.  相似文献   
18.
The aerodynamic effects of various configurations of an urban array were investigated in a wind-tunnel experiment. Three aerodynamic parameters characterising arrays—the drag coefficient (C d ), roughness length (z o) and displacement height (d)—are used for analysis. C d is based on the direct measurement of the total surface shear using a floating element, and the other two parameters are estimated by logarithmic fitting of the measured wind profile and predetermined total drag force. The configurations of 63 arrays used for measurement were designed to estimate the effects of layout, wind direction and the height variability of the blocks on these parameters for various roughness packing densities. The results are summarised as follows: (1) The estimated C d and z o of the staggered arrays peak against the plan area index (λ p ) and frontal area index (λ f ), in contrast with values for the square arrays, which are less sensitive to λ p and λ f . In addition, the square arrays with a wind direction of 45° have a considerably larger C d , and the wind direction increases z o/H by up to a factor of 2. (2) The effect of the non-uniformity of roughness height on z o is more remarkable when λ f exceeds 20%, and the discrepancy in z o is particularly remarkable and exceeds 200%. (3) The effect of the layout of tall blocks on C d is stronger than that of short blocks. These results indicate that the effects of both wind direction and the non-uniformity of the heights of buildings on urban aerodynamic parameters vary greatly with λ p and λ f ; hence, these effects should be taken into account by considering the roughness packing density.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号