首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
  国内免费   1篇
大气科学   7篇
地球物理   18篇
地质学   36篇
海洋学   15篇
天文学   10篇
自然地理   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
81.
The stability and equation of state for the cotunnite phase in TiO2 were investigated up to a pressure of about 70 GPa by high-pressure in situ X-ray diffraction measurements using a laser-heated diamond anvil cell. The transition sequence under high pressure was rutile → α-PbO2 phase → baddeleyite phase → OI phase → cotunnite phase with increasing pressure. The cotunnite phase was the most stable phase at pressures from 40 GPa to at least 70 GPa. The equation of state parameters for the cotunnite phase were established on the platinum scale using the volume data at pressures of 37–68 GPa after laser annealing, in which the St value, an indicator of the magnitude of the uniaxial stress component in the samples, indicates that these measurements were performed under quasi-hydrostatic conditions. The third-order Birch-Murnaghan equation of state at K 0′ = 4.25 yields V 0 = 15.14(5) cm3/mol and K 0 = 294(9), and the second-order Birch-Murnaghan equation of state yields V 0 = 15.11(5) cm3/mol and K 0 = 306(9). Therefore, we conclude that the bulk modulus for the cotunnite phase is not comparable to that of diamond.  相似文献   
82.
We present a review of elemental abundances in the Milky Way stellar disk, bulge, and halo with a focus on data derived from high-resolution stellar spectra. These data are fundamental in disentangling the formation history and subsequent evolution of the Milky Way. Information from such data is still limited and confined to narrowly defined stellar samples. The astrometric Gaia satellite will soon be launched by the European Space Agency. Its final data set will revolutionize information on the motions of a billion stars in the Milky Way. This will be complemented by several ground-based observational campaigns, in particular spectroscopic follow-up to study elemental abundances in the stars in detail. Our review shows the very rich and intriguing picture built from rather small and local samples. The Gaia data deserve to be complemented by data of the same high quality that have been collected for the solar neighborhood.  相似文献   
83.
Motivated by the recently improved knowledge on the kinematic and chemical properties of the Galactic metal-poor stars, we present the numerical simulation for the formation of the Galactic stellar halo to interpret the observational results. As a model for the Galaxy contraction, we adopt the currently standard theory of galaxy formation based on the hierarchical assembly of the cold dark matter fluctuations. We find, for the simulated stars with &sqbl0;Fe&solm0;H&sqbr0;相似文献   
84.
85.
Towada caldera, lying near the northern end of Honsyu, Japan was constructed by eruptions of lavas and pyroclastic materials in three separate periods. At the ends of the first and second periods, great amounts of pumice were erupted in the form of pumice flow and fall respectively. Each pumice cruption was followed by collapse of the center of the cones resulting in double calderas. The lavas of these three periods and the pumice of the first and second periods were chemically analysed. The result was plotted in several different types of variation diagrams. The points for the lavas and pumice lie generally on smooth curves, indicating that the magmas which caused the pumice cruptions belong to the same general differentiation series as do the lavas. If SiO2/FeO+Fe2O, is plotted against sodification index (MgO x 100/MgO+FeO+Fe2O, +Na2O+K2O), points for the lavas lie on a straight line, whereas those for the pumice lie on another straight line branching from the former at some point in the middle stage of differentiation. The rate of increase of this ratio in the pumice is greater than in the lavas, implying that less SiO2 and more iron were subtracted from the magmas producing the pumice than from those producing the lavas. This was probably caused by crystallization of a greater amount of magnetite in the former magmas possibly due to higher oxygen partial pressure which may be in turn related to higher water content. It is not necessary to postulate melting of the crust in order to generate magmas of the pumice eruptions of the central type.  相似文献   
86.
A technique for density measurement under high pressure and high temperature was developed using the X-ray absorption imaging method combined with an externally heated diamond anvil cell. The densities of solid and liquid In were measured in the pressure and temperature ranges of 3.2–18.6 GPa and 294–719 K. The densities obtained through the X-ray absorption imaging method were in good agreement (less than 2.0% difference) with those obtained through X-ray diffraction. Based on the measured density, the isothermal bulk modulus of solid In is determined as 48.0 ± 1.1?40.9 ± 0.8 GPa at 500 K, assuming K′ = 4 to 6. The compression curve of liquid In approaches that of solid In at higher pressures and does not cross over the solid compression curve in the measurement range. The present technique enables us to determine the densities of both solids and liquids precisely in a wide pressure and temperature range.  相似文献   
87.
We observed a direct reaction of metallic iron with water to form iron hydride and iron oxide, 3Fe + H2O–>2FeHx + FeO, at pressures from 6 GPa to 84 GPa and temperatures above 1,000 K in diamond anvil cell (DAC). Iron hydride is dhcpFeHx or -FeHx, and iron oxide has the rhombohedral or B1 structure at pressures at least up to 37 GPa. The formation of an assembly composed of dhcpFeHx and FeO with the B8 structure was observed at 84 GPa. In primordial Earth, water formed by dehydration of the low temperature primitive materials reacts with metallic iron in the high temperature component to form iron hydride FeHx and iron oxide FeO. The former would be incorporated in the iron forming the core. Thus hydrogen could be an important element of the Earths core. This reaction would be essential for transport of hydrogen into the core in the accretion stage of the Earth.  相似文献   
88.
Several experimental results indicate that S w (the skewness of the vertical turbulent velocity) increases with height, and K w (the kurtosis) decreases with height in the neutral surface layer. The measured behavior of S w and K w with height under neutral conditions is shown to be consistent with available models for the gradient-diffusion and the pressure-velocity correlation. In addition, an estimate of the mode of the probability density distribution turns out to be helpful in interpreting the height dependence of K w.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号