首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   20篇
  国内免费   10篇
测绘学   10篇
大气科学   34篇
地球物理   156篇
地质学   162篇
海洋学   127篇
天文学   68篇
综合类   9篇
自然地理   45篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   10篇
  2017年   14篇
  2016年   25篇
  2015年   12篇
  2014年   35篇
  2013年   21篇
  2012年   20篇
  2011年   23篇
  2010年   30篇
  2009年   34篇
  2008年   34篇
  2007年   31篇
  2006年   26篇
  2005年   37篇
  2004年   29篇
  2003年   20篇
  2002年   21篇
  2001年   25篇
  2000年   9篇
  1999年   11篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   3篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1964年   2篇
  1956年   2篇
  1950年   2篇
排序方式: 共有611条查询结果,搜索用时 31 毫秒
61.
We develop a summer temperature reconstruction for temperate East Asia based on a network of annual tree-ring chronologies covering the period 800–1989 C.E. The East Asia reconstruction is the regional average of 585 individual grid point summer temperature reconstructions produced using an ensemble version of point-by-point regression. Statistical calibration and validation tests indicate that the regional average possesses sufficient overall skill to allow it to be used to study the causes of temperature variability and change over the region. The reconstruction suggests a moderately warm early medieval epoch (ca. 850–1050 C.E.), followed by generally cooler ‘Little Ice Age’ conditions (ca. 1350–1880 C.E.) and 20th century warming up to the present time. Since 1990, average temperature has exceeded past warm epochs of comparable duration, but it is not statistically unprecedented. Superposed epoch analysis reveals a volcanic forcing signal in the East Asia summer temperature reconstruction, resulting in pulses of cooler summer conditions that may persist for several years. Substantial uncertainties remain, however, particularly at lower frequencies, thus requiring caution and scientific prudence in the interpretation of this record.  相似文献   
62.
1 INTRODUCTION δ13C in organic matters from lacustrine sedi- ments varies with several factors including aquatic plants, vegetation type in the catchment, atmos- pheric CO2 concentration, climate (temperature and precipitation), and properties of water, …  相似文献   
63.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   
64.
65.
Seasonal changes in the water and energy exchanges over a pine forest in eastern Siberia were investigated and compared with published data from a nearby larch forest. Continuous observations (April to August 2000) were made of the eddy‐correlation sensible heat flux and latent heat flux above the canopy. The energy balance was almost closed, although the sum of the turbulent fluxes sometimes exceeded the available energy flux (Rn ? G) when the latent heat flux was large; this was related to the wind direction. We examined the seasonal variation in energy balance components at this site. The seasonal variation and magnitude of the sensible heat flux (H) was similar to that of the latent heat flux (λE), with maximum values occurring in mid‐June. Consequently, the Bowen ratio was around 1·0 on many days during the study period. On some clear days just after rainfall, λE was very large and the sum of H and λE exceeded Rn ? G. The evapotranspiration rate above the dry canopy from May to August was 2·2 mm day?1. The contributions of understory evapotranspiration (Eu) and overstory transpiration (Eo) to the evapotranspiration of the entire ecosystem (Et) were both from 25 to 50% throughout the period analysed. These results suggest that Eu plays a very important role in the water cycle at this site. From snowmelt through the tree growth season (23 April to 19 August 2000), the total incoming water, comprised of the sum of precipitation and the water equivalent of the snow at the beginning of the melt season, was 228 mm. Total evapotranspiration from the forest, including interception loss and evaporation from the soil when the canopy was wet, was 208–254 mm. The difference between the incoming and outgoing amounts in the water balance was from +20 to ?26 mm. The water and energy exchanges of the pine and larch forest differed in that λE and H increased slowly in the pine forest, whereas λE increased rapidly in the larch forest and H decreased sharply after the melting season. Consequently, the shape of the Bowen ratio curves at the two sites differed over the period analysed, as a result of the differences in the species in each forest and in soil thawing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
66.
67.
68.
69.
This paper treats the static spheroidal deformation of degree 1 in detail. We give a physical interpretation of the consistency relation imposed on it. the relation serves as a guiding principle to find out all of its members. Following Okubo & Saito, we derive the partial derivatives of the degree 1 Love numbers with respect to density, bulk modulus and rigidity.  相似文献   
70.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号