首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24737篇
  免费   180篇
  国内免费   922篇
测绘学   1415篇
大气科学   2000篇
地球物理   4594篇
地质学   11680篇
海洋学   1077篇
天文学   1658篇
综合类   2164篇
自然地理   1251篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4766篇
  2017年   4044篇
  2016年   2586篇
  2015年   241篇
  2014年   106篇
  2013年   38篇
  2012年   1002篇
  2011年   2736篇
  2010年   2033篇
  2009年   2326篇
  2008年   1912篇
  2007年   2374篇
  2006年   68篇
  2005年   215篇
  2004年   415篇
  2003年   425篇
  2002年   263篇
  2001年   61篇
  2000年   54篇
  1999年   21篇
  1998年   29篇
  1997年   4篇
  1996年   8篇
  1995年   3篇
  1993年   4篇
  1992年   3篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1981年   23篇
  1980年   20篇
  1979年   2篇
  1978年   2篇
  1976年   6篇
  1975年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1959年   1篇
  1956年   2篇
  1953年   1篇
  1951年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   
142.
Cycladophora davisiana, a radiolarian species dwelling at mesopelagic depths, is known as a representative glacial fauna due to its unique distribution during glacial periods. In the present ocean, abundant production of C. davisiana is only observed in the Okhotsk Sea, indicating an adaptation of C. davisiana for seasonal sea-ice covered conditions. We found pronounced abundant production of C. davisiana during the early to middle Holocene in the Okhotsk Sea, suggesting more favorable conditions for C. davisiana than the present Okhotsk Sea. In order to clarify the reason, oceanographic conditions during the Holocene were reconstructed based on biomarkers, lithogenic grains including ice-rafted debris (IRD), biogenic opal, and total organic carbon (TOC) in two sediment cores from the Okhotsk Sea. These indicators suggest that the pronounced C. davisiana production may be attributed to: 1) a supply to mesopelagic depths under intensified stratification of fine organic particles derived from coccolithophorids, bacteria, and detrital materials; and 2) cold, well-ventilated intermediate water formation.  相似文献   
143.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
144.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
145.
A surface ship gravity survey was carried out in the northern part of the North Fiji Basin during the NOFI cruise by the R/V l'Atalante in August-September, 1994. The two ridges inside the study area, the South Pandora Ridge and the Tripartite Ridge, present different structures and states of isostatic equilibrium in terms of gravity anomaly and its tectonic implications. The former is supported by a restoring force of an imaginary elastic plate in the crust and the latter by the Airy type isostasy. These characteristics can be derived from the difference in magmatic activity, as influenced by the difference in lithospheric structure. The latter is characterised by greater active magmatism and hydrothermalism underneath the ridge than the former. Such a difference in the magmatic activity and the horizontal scale of the shallow subsurface structure is derived from the difference in the stiffness or viscosity of the lithosphere beneath the two ridges.  相似文献   
146.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   
147.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   
148.
Archeological evidence of Pacific salmon in Hokkaido is reviewed and compared with results from western North America. Salmon remains have been found at 24 sites in Hokkaido from the Early Jomon Period to the Ainu Period (6000–100 years ago). Fish remains at three archeological sites in the Kushiro River basin indicated that Pacific salmon (Oncorhynchus spp.) were distributed and utilized from 6000 years ago. The present Kushiro Wetland was formerly covered with seawater and called the Paleo Kushiro Bay 5000–6000 years ago. Based on the molluscan fossil fauna, seawater temperature at Paleo Kushiro Bay was about 5°C warmer than at present. Warmer conditions for salmon in Kushiro 5000–6000 years ago corresponded with the poor conditions for salmon in the Columbia River basin 6000–7000 years ago. If the future global warming is similar to the conditions that prevailed 5000–6000 years ago, the southern limit of salmon distribution will shift northwards and the salmon production will decrease. However, they will not disappear from either Hokkaido or southwestern North America.  相似文献   
149.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   
150.
Two single-channel seismic (SCS) data sets collected in 2000 and 2005 were used for a four-dimensional (4D) time-lapse analysis of an active cold vent (Bullseye Vent). The data set acquired in 2000 serves as a reference in the applied processing sequence. The 4D processing sequence utilizes time- and phase-matching, gain adjustments and shaping filters to transform the 2005 data set so that it is most comparable to the conditions under which the 2000 data were acquired. The cold vent is characterized by seismic blanking, which is a result of the presence of gas hydrate in the subsurface either within coarser-grained turbidite sands or in fractures, as well as free gas trapped in these fracture systems. The area of blanking was defined using the seismic attributes instantaneous amplitude and similarity. Several areas were identified where blanking was reduced in 2005 relative to 2000. But most of the centre of Bullseye Vent and the area around it were seen to be characterized by intensified blanking in 2005. Tracing these areas of intensified blanking through the three-dimensional (3D) seismic volume defined several apparent new flow pathways that were not seen in the 2000 data, which are interpreted as newly generated fractures/faults for upward fluid migration. Intensified blanking is interpreted as a result of new formation of gas hydrate in the subsurface along new fracture pathways. Areas with reduced blanking may be zones where formerly plugged fractures that had trapped some free gas may have been opened and free gas was liberated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号