首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   3篇
  国内免费   5篇
测绘学   7篇
大气科学   4篇
地球物理   61篇
地质学   47篇
海洋学   32篇
天文学   28篇
综合类   5篇
自然地理   9篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   20篇
  2012年   6篇
  2011年   6篇
  2010年   12篇
  2009年   9篇
  2008年   6篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   19篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
11.
A steady quasi-geostrophic 2.5-layer model, forced by both Ekman pumping and a mass source/sink situated at the western boundary has been constructed to investigate the effect of diapycnal transport due to convection in the Okhotsk Sea and tidal mixing at the Kuril Straits on the intermediate layer in the North Pacific. The model illustrates a combined effect of the wind-driven and mass-driven circulations. First, net mass input induces a “barotropic” mode inter-gyre flow along the western boundary through the dynamical influence of Kelvin waves. This flow creates characteristic curves (geostrophic contours) that facilitate inter-gyre communication through the western boundary layer from the location of the mass source to the subtropical gyre. Due to the effect of wind-driven circulation, the offshore part turns eastward into the interior, encircles the outer rim of the region (which would otherwise be the pool region in the absence of mass input), and then encounters the western boundary. Eventually, the water fed into the lower layer flows mostly along this path and later flows away to the equatorial region. Conversely, in the upper layer, water is fed from the equator to the subtropics, and to the subpolar interior region through the western boundary current. The water then circulates along the outer rim and is absorbed into the mass sink. The model is controlled mainly by three nondimensional parameters: (1) the ratio of net mass input rate to the maximum Sverdrup transport (Q/T Sv max ), which affects the inter-gyre communication by altering the paths of geostrophic contours, (2) the ratio of a mass input rate into the lower layer to that in total (Q 2/Q), which controls the vertical structure of the inter-gyre flow, and (3) the measure of the wind forcing effect relative to the β effect, which determines the horizontal extent of the area influenced by the mass input. The other parameter regimes with respect to Q/T Sv max and Q 2/Q are also presented.  相似文献   
12.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
13.
Thirty-seven new K–Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9–2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3–0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.  相似文献   
14.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   
15.
ABSTRACT

This study aimed to evaluate the potential of the recently introduced Prophet model for estimating reference evapotranspiration (ETo). A comparative study was conducted for benchmarking the model results with support vector regression (SVR) and temperature-based empirical models (Thornthwaite and Hargreaves) in southern Japan. The performance of the Prophet, SVR and temperature-based empirical models was evaluated by Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2). The results indicate that temperature-based Prophet and SVR models have greater accuracy than the empirical models. The Prophet model with sole input of relative humidity, sunshine hours or windspeed showed acceptable accuracy (NSE > 0.80; R2 > 0.80), while SVR models with similar inputs showed greater errors. Accuracy improved with increasing number of input parameters, giving excellent performance (NSE > 0.95; R2 > 0.95) with all input parameters. Hence, the Prophet model is a new promising approach for modelling ETo with limited input variables.  相似文献   
16.
We have constructed a large, mosaic CCD camera called MOA-cam2 which has 4096 × 6144-pixelsto search for gravitational microlensing events. MOA-cam2 has three4096 × 2048-pixel SITe CCD chips, which have a very high quantum efficiency (nearly 80% in the wave region 500 to 800 nm),and three buttable sides. We have placed the threechips side by side with 100 m dead space. MOA-cam2 has been installed on the 61 cm Boller and Chivens telescope of the MOA collaboration at the Mt. John University Observatory (MJUO) in NewZealand since July 1998. The field coverage is 0.92° × 1.38° per exposure. The technical details of MOA-cam2 and the first images obtained with the Boller and Chivens telescope are presented. MOA-cam2 introduces a second phase of research on gravitational microlensing by the MOA collaboration.  相似文献   
17.
The lunar rock and mineral characterization consortium (LRMCC) has conducted coordinated mineralogy/petrography/spectroscopy analyses of a suite of pristine lunar basalts. Four basalt slabs (two low‐Ti, two high‐Ti) and paired thin sections were analyzed. Thin sections were analyzed for mineralogy/petrography, while the slabs were used to prepare particulate separates of major mineral phases and bulk samples. Mineral separates and particulate bulk samples were crushed to controlled grain sizes and their reflectance spectra measured in the NASA RELAB at Brown University. The resulting data set provides an essential foundation for spectral mixing models, offers valuable endmember constraints for space weathering analyses, and represents critical new ground truth results for lunar science and exploration efforts.  相似文献   
18.
19.
Calcareous and smectitic clay samples from the Coniacian–Lower Campanian system, Tunisia, were used as adsorbents for the removal of copper and zinc from aqueous solutions in single and binary systems. Calcareous clay sample was treated with acetic acid to obtain carbonate-free sample that was also used for metals removal. The adsorption of metal ions onto natural clay was tested in a batch method by mixing 1 g/L of each sample with a metal ion solution of zinc (300 μmol/L) and/or copper 600 μmol/L under the operating pH of 6, and agitation speed of 200 rpm within the equilibrium time of 60 min at 25 °C for single and binary systems. Our results showed that natural clay samples were mainly composed of silica, alumina, iron, and magnesium oxides. Adsorption data showed that the studied clay samples removed substantial amounts of heavy metals in single and mixed systems. Initial solution pH and carbonates contents enhanced the removal capacities of the studied clay samples, confirming their strong influencing effects. Thermodynamic parameters indicated an endothermic adsorption for metals removal by calcareous clay, but exothermic process for the smectitic sample. These results suggest that the Late Cretaceous clays, Tunisia, can be effectively used as natural adsorbents for the removal of toxic heavy metals in aqueous systems.  相似文献   
20.
Pressure-induced phase transition of δ-AlOOH was confirmed between 6.1 and 8.2 GPa by using a single-crystal synchrotron X-ray diffraction method. The phase transition is reversible and unquenchable. Results from analysis of the distribution of X-ray diffraction intensities at 8.2 GPa reveal an additional systematic, absence of k + l odd for 0kl in comparison with h + l odd for h0l observed prior to the phase transition (space group, P21 nm). The space group of the post-transition phase should be Pnnm or Pnn2 to satisfy the systematic absence rule. Crystal structure refinements of the post-transition phase conducted for the three models (Pnnm, Pnn2, and P21 nm) indicate that the space group of the post-transition phase is Pnnm. The O–O distance of hydrogen bond in the post-transition phase at 8.2 GPa is 2.439(6) Å and is significantly longer than the predicted distance (2.366 Å) of the hydrogen bond symmetrization in δ-AlOOH. The H distribution in the post-transition phase would display a fully disordered hydrogen bond pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号