首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
  国内免费   3篇
地球物理   33篇
地质学   45篇
海洋学   17篇
天文学   40篇
自然地理   9篇
  2021年   2篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   14篇
  2006年   4篇
  2005年   10篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有144条查询结果,搜索用时 0 毫秒
61.
The possible existence of meteoritic spherules was investigated among several silicate spherules separated from oceanic sediments and analyzed by means of INAA (instrumental neutron activation analysis).A 0.72 mg glassy spherule was found to have uniform enrichment of 4 ~ 5 for the refractory REE (rare earth elements) and Sc with substantial depletion of Ce relative to chondritic abundances. This implies that this spherule is meteoritic in origin and that the enrichment of refractory elements was established by high temperature heating in a high O/H environment, possibly at the time of entering the Earth's atmosphere.The other three analyzed spherules showed major and trace element abundances that are consistent with an origin in the oceanic environment.  相似文献   
62.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   
63.
A brief review was made of storm runoff processes and the mechanisms of its generation in relation to subsurface water behaviors in a small forested drainage basin located in the western suburbs of Tokyo, Japan. The results of field investigations showed that the main source of storm runoff was groundwater flow and that the rapid and large amounts of groundwater discharge during a storm event could not be explained solely by the traditional concept of Darcian matrix flow. Several mechanisms such as pipe flow, air pressure effect, and capillary barrier effect were recognized that would induce a rapid response of groundwater to storm events depending on differences in local hydrologic conditions. All of these mechanisms were chiefly attributed to inhomogeneities of the soil deposits. The importance of dynamic behaviors of subsurface water during a storm event was emphasized in considering the mechanism of storm runoff generation.  相似文献   
64.
Hirayama  Tadashi 《Solar physics》1985,100(1-2):415-434
We review observational studies of solar prominences with some reference to theoretical understandings. We lay emphasis on the following findings: (1) An important discovery was made by Leroy, Bommier, and Sahal-Bréchot concerning the direction of the magnetic field inside some high-altitude, high-latitude prominences, where the field vector points in the opposite direction from the one which would be expected from the potential field calculated from the observed photospheric magnetic field. (2) Landman suggests the possibility of a high total density of 10–11 g cm –3 for the main body of quiescent prominences, 50 times higher than the value hitherto believed. (3) Flow patterns, nearly parallel to the magnetic neutral lines, were detected in the 105 K plasma near and in prominences. (4) Coronal loop structures were found overlying prominences as viewed from X-ray photographs. We propose also an evolutionary scheme by taking the magnetic field topologies into account.The fundamental question why a prominence is present remains basically unanswered.  相似文献   
65.
Transneptunian objects (TNOs) orbit beyond Neptune and do offer important clues about the formation of our solar system. Although observations have been increasing the number of discovered TNOs and improving their orbital elements, very little is known about elementary physical properties such as sizes, albedos and compositions. Due to TNOs large distances (>40 AU) and observational limitations, reliable physical information can be obtained only from brighter objects (supposedly larger bodies). According to size and albedo measurements available, it is evident the traditionally assumed albedo p=0.04 cannot hold for all TNOs, especially those with approximately absolute magnitudes H?5.5. That is, the largest TNOs possess higher albedos (generally >0.04) that strongly appear to increase as a function of size. Using a compilation of published data, we derived empirical relations which can provide estimations of diameters and albedos as a function of absolute magnitude. Calculations result in more accurate size/albedo estimations for TNOs with H?5.5 than just assuming p=0.04. Nevertheless, considering low statistics, the value p=0.04 sounds still convenient for H>5.5 non-binary TNOs as a group. We also discuss about physical processes (e.g., collisions, intrinsic activity and the presence of tenuous atmospheres) responsible for the increase of albedo among large bodies. Currently, all big TNOs (>700 km) would be capable to sustain thin atmospheres or icy frosts composed of CH4, CO or N2 even for body bulk densities as low as 0.5 g cm−3. A size-dependent albedo has important consequences for the TNOs size distribution, cumulative luminosity function and total mass estimations. According to our analysis, the latter can be reduced up to 50% if higher albedos are common among large bodies.Lastly, by analyzing orbital properties of classical TNOs (), we confirm that cold and hot classical TNOs have different concentration of large bodies. For both populations, distinct absolute magnitude distributions are maximized for an inclination threshold equal to 4.5° at >99.63% confidence level. Furthermore, more massive classical bodies are anomalously present at , a result statistically significant and apparently not caused by observational biases. This feature would provide a new constraint for transneptunian belt formation models.  相似文献   
66.
In the transneptunian classical region (), an unexpected orbital excitation in eccentricity and inclination, dynamically distinct populations and the presence of chaotic regions are observed. For instance, the 7:4 mean motion resonance () appears to have been causing unique dynamical excitation according to observational evidences, namely, an apparent shallow gap in number density and anomalies in the colour distribution, both features enhanced near the 7:4 mean motion resonance location. In order to investigate the resonance dynamics, we present extensive computer simulation results totalizing almost 10,000 test particles under the effect of the four giant planets for the age of the solar system. A chaotic diffusion experiment was also performed to follow tracks in phase space over 4-5 Gyr. The 7:4 mean motion resonance is weakly chaotic causing irregular eccentricity and inclination evolution for billions of years. Most 7:4 resonant particles suffered significant eccentricities and/or inclinations excitation, an outcome shared even by those located in the vicinity of the resonance. Particles in stable resonance locking are rare and usually had 0.25<e<0.3. For other regions, 7:4 resonants had quite large mobility in phase space typically leaving the resonance (and being scattered) after reaching a critical e∼0.2. The escape happened in 108-109 yr time scales. Concerning the inclination dependence for 7:4 resonants, we found strong instability islands for approximately i>10°. Taking into account those particles still locked in the resonance at the end of the simulations, we determined a retainability of 12-15% for real 7:4 resonant transneptunian objects (TNOs). Lastly, our results demonstrate that classical TNOs associated with the 7:4 mean motion resonance have been evolving continuously until present with non-negligible mixing of populations.  相似文献   
67.
Distribution of the anoxic water mass in the eastern part of Hiuchi-Nada was investigated from 1981 to 1983. A cold water mass was found on the bottom of the area concerned in summer, and a second (i.e. lower) thermocline appeared just above the cold water mass. The anoxic water was observed below a second thermocline. The horizontal distribution of the cold water mass coincided with that of the anoxic water mass, and also with a region of high concentration of organic matter in the sediment. These results suggest two important effects of the second thermocline on the generation of the anoxic water mass. Firstly, it prevents supply of dissolved oxygen from the upper to bottom layer of the water column. Secondly, it accelerates settling of particulate material resulting in a large accumulation of organic matter in the bottom water and the sediment which leads to an increase in the rate of oxygen consumption. The net oxygen consumption rate in the bottom layer in this sea was much smaller than that in Mikawa Bay where anoxia occurs at almost the same level as in Hiuchi-Nada. This finding also suggests the important role of the second thermocline.  相似文献   
68.
The mechanism and rate of hydration of rhyolitic glass during weathering were studied. Doubly polished thin sections of two rhyolites with different duration of weathering (Ohsawa lava: 26,000 yr, Awanomikoto lava: 52,000 yr) were prepared. Optical microscope observation showed that altered layers had developed along the glass surfaces. IR spectral line profile analysis was conducted on the glass sections from the surface to the interior for a length of 250 μm and the contents of molecular H2O (H2Om), OH species (OH) and total water (H2Ot) were determined. The diffusion profile of H2Om in Ohsawa lava extends beyond the layer observed by optical microscope. The content of H2Om in the hydrated region is much higher than that of OH species. Thus, the reaction from H2Om to OH appears to be little and H2Om is the dominant water species moving into the glass during weathering. Based on the concentration profiles, the diffusion coefficients of H2Om(DH2Om) and H2Ot(DH2Ot) were determined to be 2.8 × 10−10 and 3.4 × 10−10 μm2 s−1 for Ohsawa lava, and 5.2 × 10−11 and 4.1 × 10−11 μm2 s−1 for Awanomikoto lava, respectively. The obtained DH2Om during weathering are more than 2-3 orders of magnitude larger than the diffusion coefficient at ∼20 °C that is extrapolated from the diffusivity data for >400 °C. This might suggest that the mechanism of water transport is different at weathering conditions and >400 °C.  相似文献   
69.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
70.
We monitored acoustic emission (AE) events during an in-situ direct shear test on a specimen composed of a slate-dominant alternation of slate and sandstone, measuring 0.5 m long, 0.5 m wide and 0.2 m high. The test was conducted in a survey tunnel for an underground powerhouse in central Japan. The AE epicenters located on a fractured plane are compared with the locations of joints and a loosening seam, the height distribution of the fractured plane, and the horizontal movement of the test block prior to failure. We conclude that an initially intact region of rock bounded by the joints and the seam is fractured, generating the AE. Considering these results in connection with asperity models of seismogenic faulting for a subduction-zone earthquake, the significant contrast of stress conditions derived from the geological inhomogeneity and the uneven fractured plane is analogous to that due to subducted seamounts and horst-graben structures on a subducted oceanic plate. For an inland earthquake, the intact regions on an expected shear plane can be considered to be a portion of the fault asperity that causes strong ground motion, while the weakened portion can be considered to correspond to a region of aseismic creep. Consequently, large-scale inhomogeneous rock fracturing experiments such as the in-situ direct shear test may provide useful insights as analog models of seismogenic faulting. Furthermore, understanding of inhomogeneous rock-mass fracturing obtained from such experiments will not only contribute to a better understanding of the mechanism of earthquakes but also provide valuable knowledge for AE monitoring applications in rock engineering, such as the predictions of rockbursts in mines and the monitoring of fractures around large underground chambers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号