首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   4篇
测绘学   2篇
大气科学   1篇
地球物理   22篇
地质学   49篇
海洋学   14篇
天文学   4篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1968年   1篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
31.
This study investigated geological evidence for near-surface crustal deformation in a high-strain shear zone that has been geodetically identified but which is not associated with obvious tectonic landforms. Fieldwork was conducted in the east–west-trending southern Kyushu high-strain shear zone (SKHZ), Japan, focusing mainly on occurrences of fracture zones, which are defined by a visible fracture density of >1 per 10 cm2 and are commonly associated with cataclasite, fault breccia, and gouge. The area in which east–west-trending fracture zones are dominant is restricted to the east–west-trending, ~2-km-wide aftershock area of the 1997 Northwestern Kagoshima Earthquakes. Analysis of slip data from minor faults using the multiple inverse method, irrespective of whether the faults are in fracture zones, reveals that the area where the calculated main stress field is consistent with the current stress field estimated from focal-mechanism solutions of microearthquakes is restricted to the east–west-trending aftershock area. This finding for the SKHZ contrasts with the case of the Niigata–Kobe Tectonic Zone, which is a major strain-concentration zone with many exposed active faults in central Japan and for which the stress field estimated using fault-slip data is considered to be uniform and coincides with the current stress field. The cumulative amount of displacement estimated from the areal density of fracture zones in the SKHZ study area is smaller than that estimated from geodetically measured strain rates. Investigations based on slip data from minor faults and fracture-zone occurrence could help to identify concealed faults that are too small to generate tectonic landforms but which are sufficiently large to trigger major earthquakes.  相似文献   
32.
33.
34.
In this study, the three‐dimensional (3‐D) microstructure of 48 Itokawa regolith particles was examined by synchrotron microtomography at SPring‐8 during the preliminary examination of Hayabusa samples. Moreover, the 3‐D microstructure of particles collected from two LL6 chondrites (Ensisheim and Kilabo meteorites) and an LL5 chondrite (Tuxtuac meteorite) was investigated by the same method for comparison. The modal abundances of minerals, especially olivine, bulk density, porosity, and grain size are similar in all samples, including voids and cracks. These results show that the Itokawa particles, which are surface materials from the S‐type asteroid Itokawa, are consistent with the LL chondrite materials in terms of not only elemental and isotopic composition of the minerals but also 3‐D microstructure. However, we could not determine whether the Itokawa particles are purely LL5, LL6, or a mixture of the two. No difference between the particles collected from Rooms A and B of the sample chamber, corresponding to the sampling sequence of the spacecraft's second and first touchdowns, respectively, was detected because of the statistically small amount of particles from Room B.  相似文献   
35.
Supports crushing accident occasionally occurs in the protected seam exploitation of deep multi-seam coal mining structure and results in adverse effect to the production. To prevent its recurrence in a newly developed working field, a 3D numerical extraction model was built based on the geologic and mining conditions of Jining coal mine to evolve the changes, state and characteristics of the reconstructed vertical and lateral stress in rock interlayer after protective seam exploitation. Stress release and increase zones of this mining structure were separated. Mining-induced localized stress concentration and the interlayer rock failure behavior were explored. The action of concentrated stress on the hydraulic supports in protected seam was discussed upon the major stress redistribution. Using the infinitesimal strain method, a mechanical model was created to further explore, from the vertical and lateral directions, the cause and mechanism of localized stress concentration and rock failure behavior in rock interlayer. The field investigation was finally performed to verify the numerical and mechanical results, and the essential control measures were proposed to prevent this accident. Key findings of this study bring some new insights into the deep multi-seam coal extraction and help to promote a more reliable underground mining.  相似文献   
36.
Based on experimental and numerical investigations, the present paper focuses on under ground scope (UGS) chemical grouting method that can actually improve the pipeline surrounding foundation to solve pipeline saggy damage. According to the experimental results, a solution-type injection material could make lager soil deformation, using less total slurry amount than suspension-type injection material. Therefore, a suspension-type injection material with shorter gel time is more suitable for the UGS method, making it more effective to reinforce the pipeline foundation and restore pipelines. The results of some patterns of injection tests revealed relationship between the behavior of the grouting material and the deformation of the soil. It is found that the material can be injected into a foundation by fracture grouting if the permeation coefficient is lower than 1.00 × 10−3 mm/s. The situation was analyzed by using 2-D finite element method analysis software Phase2, and the analysis result proposes that the real data and simulation data are nearly the same in impermeable soil. Furthermore, even if the construction object is permeable soil, it can also be become impermeable soil by two phases grouting: soil improvement grouting and restoration grouting.  相似文献   
37.
To understand the generation and evolution of mafic magmas from Klyuchevskoy volcano in the Kamchatka arc, which is one of the most active arc volcanoes on Earth, a petrological and geochemical study was carried out on time-series samples from the volcano. The eruptive products show significant variations in their whole-rock compositions (52.0–55.5 wt.% SiO2), and they have been divided into high-Mg basalts and high-Al andesites. In the high-Mg basalts, lower-K and higher-K primitive samples (>9 wt.% MgO) are present, and their petrological features indicate that they may represent primary or near-primary magmas. Slab-derived fluids that induced generation of the lower-K basaltic magmas were less enriched in melt component than those associated with the higher-K basaltic magmas, and the fluids are likely to have been released from the subducting slab at shallower levels for the lower-K basaltic magmas than for higher-K basaltic magmas. Analyses using multicomponent thermodynamics indicates that the lower-K primary magma was generated by ~13% melting of a source mantle with ~0.7 wt.% H2O at 1245–1260?°C and ~1.9 GPa. During most of the evolution of the volcano, the lower-K basaltic magmas were dominant; the higher-K primitive magma first appeared in AD 1932. In AD 1937–1938, both the lower-K and higher-K primitive magmas erupted, which implies that the two types of primary magmas were present simultaneously and independently beneath the volcano. The higher-K basaltic magmas evolved progressively into high-Al andesite magmas in a magma chamber in the middle crust from AD 1932 to ~AD 1960. Since then, relatively primitive magma has been injected continuously into the magma chamber, which has resulted in the systematic increase of the MgO contents of erupted materials with ages from ~AD 1960 to present.  相似文献   
38.
A Raman spectroscopic study of shock-wave densification of vitreous silica   总被引:1,自引:0,他引:1  
The densification processes in SiO2 glass induced by shock-wave compression up to 43.4 GPa are investigated by Raman spectroscopy. At first, densification increases with increasing shock pressure. A maximum densification of 11% is obtained for a shock pressure of 26.3 GPa. This densification is attributed to the reduction of the average Si−O−Si angle, which occurs first by the collapse of the largest ring cavities, then by further reduction of the average ring size. For higher shock pressures, a different structural modification is observed, resulting in decreasing densification with increasing shock pressure. Indeed, the recovered densification becomes very small, with values of 1.8 and 0.5% at 32 and 43.4 GPa, respectively. This is attributed to partial annealing of the samples due to high after shock residual temperatures. The study of the annealing process of the most densified glass by in situ high temperature Raman spectroscopy confirms that relaxation of the Si−O−Si angle starts at a lower temperature (about 800 K) than that of the siloxane rings (about 1000 K), thus explaining the high intensity of the siloxane defect bands in the samples schocked at compressions of 32 and 43.4 GPa. The large intensity of the siloxane bands in the nearly undensified samples shocked by compressions above 30 GPa may be explained by the relaxation during decompression of five- and six-fold coordinated silicon species formed at high pressure and high temperature during the shock event. Received: March 30, 1998 / Revised, accepted: August 21, 1998  相似文献   
39.
40.
Shimada  A.  Nishijima  M.  Maruyama  T. 《Journal of Oceanography》1995,51(3):289-300
Seasonal appearance ofProchlorococcus was studied by flow cytometry in Suruga Bay, Japan in 1992–1993.Prochlorococcus cells were in high concentrations (>1×104 cells ml–1) from July to October 1992 and September 1993, when the water temperature was over 20°C. The 16S rRNA of the isolated cells showed 98.5% sequence homology with that ofP. marinus (Sargasso strain), indicating that they are the same species. The former has a high divinyl-chlorophyll (DV-Chl.)a/b ratio similar to the Mediterranean strain and different from the Sargasso strain. Maximum concentration ofProchlorococcus at the surface water was 2.5×104 cells ml–1 in August 1992 and their DV-Chl.a accounted for 4.0% of the total chlorophylla. A decrease in cell density to less than 5×103 cells ml–1 was observed from December to May with an exceptional rise in January 1993. WhileProchlorococcus showed a maximum concentration of 3.6×104 cells ml–1 at 10 m depth in September 1992, phycoerythrin (PE)-richSynechococcus spp. were dominant with their maximum concentration of 2.2×105 cells ml–1 in the same water body. On the other hand, phycocyanin (PC)-richSynechococcus spp. and the larger phytoplankters showed maximum concentrations in the surface waters in May and June. BothProchlorococcus and PE-richSynechococcus showed their lowest concentrations in April. A significant positive correlation was obtained between cell concentrations of the PE-richSynechococcus andProchlorococcus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号