首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   3篇
  国内免费   3篇
测绘学   3篇
大气科学   10篇
地球物理   75篇
地质学   156篇
海洋学   38篇
天文学   26篇
自然地理   30篇
  2024年   1篇
  2021年   4篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   18篇
  2012年   27篇
  2011年   22篇
  2010年   16篇
  2009年   21篇
  2008年   20篇
  2007年   20篇
  2006年   9篇
  2005年   8篇
  2004年   14篇
  2003年   9篇
  2002年   11篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   7篇
  1984年   7篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
61.
Minerals occurring in dry and modally metasomatized spinel lherzolites from western Victoria have been analysed by proton microprobe for Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Pb, Br, rare-earth elements (REE), Th and U. Mass-balance calculations demonstrate that these trace elements are contained in specific acceptor minerals and do not occur in significant concentrations at clean grain boundaries. The level of particular trace elements in the rock depends on the presence of specific phases: for example high levels of REE, Sr (and U, Th, Br) require apatite, while Ba, Nb and Ta are strongly concentrated in amphibole±mica. Mantle metasomatism in these spinel lherzolites is inferred to result from an open-system process involving infiltration of fluids released by crystallizing silicate melts. This process produces metasomatic zones with different modal mineralogy and hence greatly different trace-element signatures. The data demonstrate that large-ion-lithophile (LIL) and high-field strength (HFS) elements in metasomatized spinel lherzolites are strongly concentrated in non-refractory phases, which will break down easily in heated volumes such as the walls of magma conduits. The heterogeneity observed in trace-element patterns of intraplate alkali basaltic rocks may not reflect source heterogeneity, but may result largely from contamination by metasomatized mantle wall rock. The KDs for most trace elements show little temperature dependence except for KDSr between orthopyroxene and clinopyroxene where KD decreases with increasing temperature. The generally uniform KDs can be used to test for disequilibrium in such assemblages.  相似文献   
62.
Quantitative vulnerability estimation for scenario-based landslide hazards   总被引:3,自引:1,他引:3  
Within the engineering profession and natural sciences, vulnerability is widely accepted to be defined as the degree of loss (or damage) to a given element or set of elements within the area affected by a threat. The value of vulnerability is expressed nondimensionally between 0 and 1. It is a fundamental component in the evaluation of landslide risk, and its accurate estimation is essential in making a reasonable prediction of the landslide consequences. Obviously, vulnerability to landslides depends not only on the characteristics of the element(s) at risk but also on the landslide intensity. This paper summarizes previous research on vulnerability to landslides and proposes a new quantitative model for vulnerability of structures and persons based on landslide intensity and resistance of exposed elements. In addition, an approximate function is suggested for estimating the vulnerability of persons in structures. Different methods for estimating the vulnerability of various elements to slow or rapid landslides are discussed. Finally, the application of the new model is illustrated through an example.  相似文献   
63.
The architecture of the Critical Zone, including mobile regolith thickness and depth to the weathering front, is first order controlled by advance of a weathering front at depth and transport of sediment at the surface. Differences in conditions imposed by slope aspect in the Gordon Gulch catchment of the Boulder Creek Critical Zone Observatory present a natural experiment to explore these interactions. The weathering front is deeper and saprolite more decayed on north-facing than on south-facing slopes. Simple numerical models of weathering front advance, mobile regolith production, and regolith transport are used to test how weathering and erosion rates interact in the evolution of weathered profiles. As the processes which attempt are being made to mimic are directly tied to climate variables such as mean annual temperature, the role of Quaternary climate variation in governing the evolution of Critical Zone architecture can be explored with greater confidence.  相似文献   
64.
The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77–0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49–0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at ~130–120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.  相似文献   
65.
Evidence from ultraslow spreading mid-ocean ridges and both fossil and present-day Ocean–Continent Transitions (OCT) demonstrates that mantle serpentinization resulting from the interaction of mantle rock and water during tectonic exhumation is widespread. Observations at white smokers in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems, which use methane as the only source of carbon. An important question is whether such bio-systems are more generally pervasive in their association with serpentinized mantle in the subsurface. In this study, we examined whether there is evidence for such a methanotrophic system in exhumed serpentinized mantle at a magma-poor rifted continental margin, by probing for characteristic biological markers in these and associated sedimentary rocks in the Totalp unit of SE Switzerland. This unit represents a remnant of the former OCT of the southern Alpine Tethyan margin and was chosen because of its mild Alpine tectonic and low-grade metamorphic overprint during Alpine orogeny, hence giving potential for the preservation of indigenous organic matter (OM). Totalp samples are characterized by low organic carbon contents of 11–647 ppm. The majority of the samples contain hydrocarbons in the form of n-alkanes in the range C17–C36. Some sediments contain isoprenoids, for example pristane and phytane and a suite of steranes that are consistent with a marine origin for the OM preserved in the rocks. Traces of marine planktonic and bacterial OM are preserved in the serpentinized mantle and overlying sediments of this ancient Tethyan OCT, but there is no evidence that the OM has been generated from methanotrophic bio-systems.  相似文献   
66.
Suzanne Y.A. Tete 《Geoforum》2012,43(1):106-115
This article explores refugees’ views about the ‘durable solutions’ or three Rs – Voluntary Repatriation, Local or Re-Integration and Resettlement – underscoring the need for refugees’ voices to inform policy actions taken on their behalf. Central to discourses on the right to return and the policy practice of voluntary repatriation is the salience accorded the nation-state of which territorial boundaries are an important defining feature. Drawing on ethnographic interviews with Liberian refugees in the Gomoa-Buduburam camp in Ghana, this article elucidates the effects of essentialist assumptions about territory, nation-state, home and enforced repatriation on the rights of refugees. By studying practices around and responses to the so-called solutions to displacement, especially VR, insights are gained into various ways in which space is reproduced and contested by international/local implementers and refugees, respectively, in the search for solutions. Importantly, the extent to which the views of displaced persons are allowed to shape such practices is highlighted. The article concludes by encouraging an embedding of refugees’ views about the three Rs into reformulating state policy expressions in displacement interventions. Including refugees as active participants in resolving their own problems, it is suggested, is one sustainable way to address the canker of protracted displacement in our times.  相似文献   
67.
Major-element compositions of minerals in peridotite xenoliths from the Lac de Gras kimberlites provide constraints on the mode of lithosphere formation beneath the central Slave Craton, Canada. Magnesia contents of reconstructed whole rocks correlate positively with NiO and negatively with CaO contents, consistent with variable partial melt extraction. Alumina and Cr2O3 contents are broadly positively correlated, suggestive of melt depletion in the absence of a Cr–Al phase. Garnet modes are high at a given Al2O3 content (a proxy for melt depletion), falling about a 7 GPa melt depletion model. These observations, combined with high olivine Mg# and major-element relationships of FeO-poor peridotites (<7.5 wt%) indicative of melt loss at pressures >3 GPa (residual FeO content being a sensitive indicator of melt extraction pressure), and similar high pressures of last equilibration (∼4.2 to 5.8 GPa), provide multiple lines of evidence that the mantle beneath the central Slave Craton has originated as a residue from high-pressure melting, possibly during plume subcretion. Apparent low melt depletion pressures for high-FeO peridotites (>7.5 wt%) could suggest formation in an oceanic setting, followed by subduction to their depth of entrainment. However, these rocks, which are characterised by low SiO2 contents (<43 wt%), are more likely to be the result of post-melting FeO-addition, leading to spuriously low estimates of melt extraction pressures. They may have reacted with a silica-undersaturated melt that dissolved orthopyroxene, or experienced olivine injection by crystallising melts. A secular FeO-enrichment of parts of the deep mantle lithosphere is supported by lower average Mg# in xenolithic olivine (91.7) compared to olivine inclusions in diamond (92.6).  相似文献   
68.
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re–Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re–Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re–Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2–1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.  相似文献   
69.
    
  相似文献   
70.
The mineral chemistry, major and trace element, and Sr–Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ɛNd (+3.0 to +6.6), indicating recent trace element enrichment (∼25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phlogopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr–Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of “intraplate-type” carbonatite metasomatism in an active continental backarc setting. Received: 26 January 2000 / Accepted: 1 March 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号