Concerning increased degradation of marine ecosystems, there is a great political and institutional demand for an array of different tools to restore a good environmental status. Thereby, eutrophication is acknowledged as one of the major human induced stressors which has to be monitored and reduced. The present study concentrates on an assessment of the eutrophication status of the Baltic Sea Protected Areas by use of available data and GIS technologies. Two geodata layers were used for analysis: (1) a map on the eutrophication status of the Baltic Sea generated by the Helsinki Commission applying the HELCOM Eutrophication Assessment Tool (HEAT), and (2) modelled data on atmospheric nitrogen deposition made available by the European Monitoring and Evaluation Programme (EMEP). The results yielded comprehensive and conclusive data indicating that most of the BSPAs may be classified as being 'affected by eutrophication' and underlining the need to decrease the overall emissions of nutrients. 相似文献
The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport–chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport–chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25 km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9 km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport–chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems. 相似文献
Ocean Dynamics - The model study aims at the assessment of effects of mining activities of manganese nodules in the deep-sea. A Lagrangian transport model is applied on a global scale to estimate... 相似文献
The relationship between the macrophyte vegetation and the nutrient concentration of the water and the sediment of a stream was studied. The small stream is fed by calcareous groundwater. The alteration in the macrophyte vegetation of the stream Rotbach from oligotrophic community towards more eutrophic species is associated with an increasing concentration of nutrients in the sediment. Particularly the concentration of SRP-P in the interstitial water changes significantly.
In terms of the macrophyte vegetation the stream can be divided into 4 floristic zones, A-D. The zones are labelled in a sequence according to their sediment's nutrient content. The chemical analyses of the water and the sediment show the highest concentrations in zone D. It is characterized by the presence of Zannichellia palustris. The zones A-C have almost the same very low nutrient concentration in the water but show a different content of nutrients in the sediment, particularly of the SRP-P in the interstitial water. Zone A which is dominated by Chara hispida shows the lowest SRP-P in the interstitial water. Within zone B which is characterized by Mentha aquatica and Nasturtium officinale and even more in zone C where Chara hispida is less abundant and Elodea canadensis occurs, the SRP-P content is elevated.
The nutrient concentration in the sediment is clearly associated with changes in the macrophyte vegetation of the stream Rotbach. 相似文献
The late Palaeoproterozoic (1.72–1.70 Ga) ferroan granites of the Khetri complex, northern Aravalli orogen, NW India, were extensively metasomatised ~900 Ma after their emplacement, at around 850–830 Ma by low-temperature (ca. 400 °C) meteoric fluids that attained metamorphic character after exchanging oxygen with the surrounding metamorphic rocks. Albitisation is the dominant metasomatic process that was accompanied by Mg and Ca metasomatism. A two-stage metasomatic model is applicable to all the altered ferroan intrusives. The stage I is represented by a metasomatic reaction interface that developed as a result of transformation of the original microcline–oligoclase (An12–14) granite to microcline–albite (An1–3) granite, and this stage is rarely preserved. In contrast, the stage II metasomatic reaction front, where the microcline-bearing albite granite has been transformed to microcline-free albite granite, is readily recognisable in the field and present in most of the intrusives. Some of them lack an obvious reaction interface due to the presence of stage II albite granites only. When studied in isolation, these intrusives were incorrectly classified and their tectonic setting was misinterpreted. Furthermore, our results show that the mafic mineralogy of metasomatised granites has a significant impact on the characterisation of such rocks in the magmatic classification and discrimination diagrams. Nevertheless, the stage I metasomatised granites can be appropriately characterised in these diagrams, whereas the characterisation of the stage II granites will lead to erroneous interpretations. The close spatial association of these high heat producing ferroan granites with iron oxide–copper–gold (IOCG), U and REE mineralisation in the region indicates a genetic link between the metasomatism and the mineralisation. World-class IOCG, U and REE deposits are associated with metasomatised ferroan granites, suggesting that such a relationship may act as a critical first-order exploration target for undiscovered mineral deposits. 相似文献
Urban and suburban storm water runoff from ten locations in eastern Massachusetts was analyzed for 39 polycyclic aromatic hydrocarbons (PAHs) compounds. Similar profiles in PAH composition were observed for groups of samples and appear to reflect land use. The largest group includes, urban storm water from areas with a mix of industrial, commercial, and residential use. Fluoranthene, phenanthrene, pyrene, chrysene, and benzo (b) fluoranthene were the predominant compounds in this group, but lighter molecular weight PAHs were also present. Sources of PAHs to storm water include a combination of petroleum and combustion. The profile of PAH compounds in local atmospheric deposition was similar to urban storm water, but differed in several of the predominant compounds. PAHs in storm water could increase the levels of these compounds in nearshore sediments and may be the most important source of high molecular weight PAHs to these environments. 相似文献
Lake Baikal, an ancient pristine lake in Siberia, has accumulated sediment deposits that span 25 million years. These deposits
have the potential to provide a long-term record of climate changes and their interaction with the ecology of the lake. In
order to investigate whether sedimentary phytoplankton pigments could be used to reconstruct past changes in total phytoplankton
abundance and productivity, we compared the spatial variability in sedimentary pigment distributions in Holocene cores from
three separate regions of the lake; Vidrino in the south, Posolski on Selenga Delta and Continent Ridge in the north. Furthermore,
we present the first continuous sedimentary pigment and organic carbon sequence of the Kazantsevo interglacial (roughly a
time equivalent to the European Eemian, and Marine Isotopic Stage MIS5e) at a resolution of approximately 150 years. Results
of the spatial study showed marked differences in the sediment pigment deposition. Lowest chlorophyll a plus its degradation products versus organic carbon ratios (Chlas/TOC) indicating lowest production, but highest variability with time (indicating strongest climatic oscillations) were found
at Continent Ridge. The study of sedimentary pigments deposited during the last two interglacial periods at Continent Ridge
showed Chlas/TOC ratios 50–1000 times higher during the Kazantsevo Interglacial compared to the glacial periods, whereas the TOC content
was only five times higher, thus indicating the significance of the Chlas/TOC ratio for the reconstruction of the phytoplankton abundance and productivity. Strong oscillations occurred during the
Kazantsevo Interglacial within centennial time scales. Chlorophyllb plus its degradation products provided additional information on the past development of Chlorophyceae. Highest Chlas/TOC ratios were found during the early Holocene at approximately 9 kyr BP. Indications of short phytoplankton production
maxima were also found during the late Atlantic (6 kyr BP) and at the Subboreal/Subatlantic transition (3 kyr BP). From this
we conclude that sedimentary chlorophyll a is a reliable indicator of phytoplanktonic response to climate changes and may serve for␣validation of future climate scenarios
in continental regions. 相似文献
Understanding the physical vulnerability of buildings and infrastructure to natural hazards is an essential step in risk assessment for large cities. We have interpreted high spatial resolution images, conducted field surveys, and utilized numerical simulations, in order to assess vulnerability across Arequipa, south Peru, close to the active El Misti volcano. The emphasis of this study was on flash floods and volcanic or non-volcanic hyperconcentrated flows, which recur on average every 3.5 years across the city. We utilized a geographic information system to embed vulnerability and hazard maps as a step to calculate risk for buildings and bridges along the Río Chili valley and two tributaries. A survey of ~1,000 buildings from 46 city blocks, different in age, construction materials, and land usage, provided architectural and structural characteristics. A similar survey of twenty bridges across the three valleys was based on structural, hydraulic, and strategic parameters. Interpretation of high spatial resolution (HSR) satellite images, which allows for quick identification of approximately 69 % of the structural building types, effectively supplemented field data collection. Mapping vulnerability has led us to pinpoint strategic areas in case of future destructive floods or flows. Calculated vulnerability is high if we examine structural criteria alone. We further consider physical setting with the most vulnerable city blocks located on the lowermost terraces, perpendicular or oblique to the flow path. Statistical analysis conducted on 3,015 city blocks, considering nine criteria identified from HSR images, indicated that building-type heterogeneity and the shape of the city blocks, along with building and street network density, are the most discriminant parameters for assessing vulnerability. 相似文献
ABSTRACT This paper reports on a controlled experiment evaluating how different cartographic representations of risk affect participants’ performance on a complex spatial decision task: route planning. The specific experimental scenario used is oriented towards emergency route-planning during flood response. The experiment compared six common abstract and metaphorical graphical symbolizations of risk. The results indicate a pattern of less-preferred graphical symbolizations associated with slower responses and lower-risk route choices. One mechanism that might explain these observed relationships would be that more complex and effortful maps promote closer attention paid by participants and lower levels of risk taking. Such user considerations have important implications for the design of maps and mapping interfaces for emergency planning and response. The data also highlights the importance of the ‘right decision, wrong outcome problem’ inherent in decision-making under uncertainty: in individual instances, more risky decisions do not always lead to worse outcomes. 相似文献