首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26472篇
  免费   238篇
  国内免费   964篇
测绘学   1468篇
大气科学   2301篇
地球物理   4990篇
地质学   12080篇
海洋学   1532篇
天文学   1808篇
综合类   2183篇
自然地理   1312篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   37篇
  2020年   41篇
  2019年   48篇
  2018年   4808篇
  2017年   4081篇
  2016年   2708篇
  2015年   308篇
  2014年   228篇
  2013年   235篇
  2012年   1079篇
  2011年   2844篇
  2010年   2133篇
  2009年   2419篇
  2008年   2007篇
  2007年   2471篇
  2006年   159篇
  2005年   295篇
  2004年   504篇
  2003年   473篇
  2002年   300篇
  2001年   95篇
  2000年   84篇
  1999年   45篇
  1998年   44篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   10篇
  1981年   23篇
  1980年   25篇
  1979年   2篇
  1976年   7篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
931.
The availability of miniaturized sensors with enhanced capabilities, new methods for image processing, and easy access to small and low-weight airborne platforms for data acquisition, including unmanned vehicles, opens new possibilities for geodetic navigation applications and developing new developments in sensor fusion. In this context, the development of efficient methods, based on low-cost sensors, to extract precise georeferenced information from digital cameras is of utmost interest. We present a method to improve the performance of the integration of GNSS/low-cost IMU by exploiting the orientation changes retrieved from digital images. In this work, a robust-adaptive Kalman filter is also introduced to further improve the performance of the method deployed. The adaptive factor and the robust factor accomplished are determined by innovation information and the threshold value of orientation changes between consecutive images. Results from airborne tests used to assess the performance of the method are presented. The results show that using a non-metric camera, the Euler angle estimation accuracy of the GNSS/low-cost IMU integration can be improved to be close to 0.5 degree and an additional improvement, which can reach 59%, can be achieved after using the robust-adaptive Kalman filter.  相似文献   
932.
This study provides a systemic analysis to identify the biases in estimated satellite clocks and illustrates their effects in precise point positioning (PPP). First, the precise satellite clock estimation method considering pseudorange and carrier phase hardware delays is derived. Two methods for satellite clock estimation are compared, and their equivalency is discussed. The results show that apart from the well-known constant code hardware biases, the time-variant phase hardware biases are also absorbed by the estimated clocks. Also, the satellite clocks contain biases caused by modeling errors. To analyze the effects of these biases, they are grouped into initial clock biases (ICBs) and time-dependent biases (TDBs). Then, a detailed analysis of the impact of the biases on PPP-based troposphere and coordinate estimates is conducted. The experimental analysis demonstrates that TDBs affect positioning and tropospheric estimates, and their impacts are more significant in the static mode. The ICBs affect coordinate accuracy, zenith total delay mean bias, and its standard deviations only at the millimeter level for kinematic and static PPP, which is negligible. However, the ICBs affect the convergence period for both static and real kinematic PPP, and the magnitude of their impact largely depends on data quality. Note that satellites clocks are generally estimated with the P1/P2 and L1/L2 ionospheric-free combinations, and that hardware-specific parts of ICBs and TDBs cancel if users employ the same type of observables as the clock providers. Otherwise, the effects of biases cannot be ignored, especially for triple-frequency applications. Also, modeling-specific parts of ICBs and TDBs are significant in real-time clocks, which also affect user applications. Our conclusion is applicable for understanding the effects of these biases.  相似文献   
933.
The integration of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) technologies is a very useful navigation option for high-accuracy positioning in many applications. However, its performance is still limited by GNSS satellite availability and satellite geometry. To address such limitations, a non-GNSS-based positioning technology known as “Locata” is used to augment a standard GNSS/INS system. The conventional methods for multi-sensor integration can be classified as being either in the form of centralized Kalman filtering (CKF), or decentralized Kalman filtering. However, these two filtering architectures are not always ideal for real-world applications. To satisfy both accuracy and reliability requirements, these three integration algorithms—CKF, federated Kalman filtering (FKF) and an improved decentralized filtering, known as global optimal filtering (GOF)—are investigated. In principle, the GOF is derived from more information resources than the CKF and FKF algorithms. These three algorithms are implemented in a GPS/Locata/INS integrated navigation system and evaluated using data obtained from a flight test. The experimental results show that the position, velocity and attitude solution derived from the GOF-based system indicate improvements of 30, 18.4 and 20.8% over the CKF- and FKF-based systems, respectively.  相似文献   
934.
Phase fractional cycle biases (FCBs) originating from satellites and receivers destroy the integer nature of PPP carrier phase ambiguities. To achieve integer ambiguity resolution of PPP, FCBs of satellites are required. In former work, least squares methods are commonly adopted to isolate FCBs from a network of reference stations. However, it can be extremely time consuming concerning the large number of observations from hundreds of stations and thousands of epochs. In addition, iterations are required to deal with the one-cycle inconsistency among FCB measurements. We propose to estimate the FCB based on a Kalman filter. The large number of observations are handled epoch by epoch, which significantly reduces the dimension of the involved matrix and accelerates the computation. In addition, it is also suitable for real-time applications. As for the one-cycle inconsistency, a pre-elimination method is developed to avoid iterations and posterior adjustments. A globally distributed network consisting of about 200 IGS stations is selected to determine the GPS satellite FCBs. Observations recorded from DoY 52 to 61 in 2016 are processed to verify the proposed approach. The RMS of wide lane (WL) posterior residuals is 0.09 cycles while that of the narrow lane (NL) is about 0.05 cycles, which indicates a good internal accuracy. The estimated WL FCBs also have a good consistency with existing WL FCB products (e.g., CNES-GRG, WHU-SGG). The RMS of differences with respect to GRG and SGG products are 0.03 and 0.05 cycles. For satellite NL FCB estimates, 97.9% of the differences with respect to SGG products are within ±?0.1 cycles. The RMS of the difference is 0.05 cycles. These results prove the efficiency of the proposed approach.  相似文献   
935.
Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as “The Internet of Things” solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.  相似文献   
936.
Kim  Ji Eun  Yu  Jisoo  Ryu  Jae-Hee  Lee  Joo-Heon  Kim  Tae-Woong 《Natural Hazards》2021,109(1):707-724

Due to the complex characteristics of drought, drought risk needs to be quantified by combining drought vulnerability and drought hazard. Recently, the major focus in drought vulnerability has been on how to calculate the weights of indicators to comprehensively quantify drought risk. In this study, principal component analysis (PCA), a Gaussian mixture model (GMM), and the equal-weighting method (EWM) were applied to objectively determine the weights for drought vulnerability assessment in Chungcheong Province, located in the west-central part of South Korea. The PCA provided larger weights for agricultural and industrial factors, whereas the GMM computed larger weights for agricultural factors than did the EWM. The drought risk was assessed by combining the drought vulnerability index (DVI) and the drought hazard index (DHI). Based on the DVI, the most vulnerable region was CCN9 in the northwestern part of the province, whereas the most drought-prone region based on the DHI was CCN12 in the southwest. Considering both DVI and DHI, the regions with the highest risk were CCN12 and CCN10 in the southern part of the province. Using the proposed PCA and GMM, we validated drought vulnerability using objective weighting methods and assessed comprehensive drought risk considering both meteorological hazard and socioeconomic vulnerability.

  相似文献   
937.
Marine controlled source electromagnetic(CSEM)data have been utilized in the past decade during petroleum exploration of the Barents Shelf,particularly for de-risking the highly porous sandstone reservoirs of the Upper Triassic to Middle Jurassic Realgrunnen Subgroup.In this contribution we compare the resistivity response from CSEM data to resistivity from wireline logs in both water-and hydrocarbon-bearing wells.We show that there is a very good match between these types of data,particularly when reservoirs are shallow.CSEM data,however,only provide information on the subsurface resistivity.Careful,geology-driven interpretation of CSEM data is required to maximize the impact on exploration success.This is particularly important when quantifying the relative re-sistivity contribution of high-saturation hydrocarbon-bearing sandstone and that of the overlying cap rock.In the presented case the cap rock comprises predominantly organic rich Upper Jurassic-Early Cretaceous shales of the Hekkingen Formation(i.e.a regional source rock).The resistivity response of the reservoir and its cap rock become merged in CSEM data due to the transverse resistance equivalence principle.As a result of this,it is imperative to understand both the relative contributions from reservoir and cap rock,and the geological sig-nificance of any lateral resistivity variation in each of the units.In this contribution,we quantify the resistivity of organic rich mudstone,i.e.source rock,and reservoir sandstones,using 131 exploration boreholes from the Barents Shelf.The highest resistivity(>10,000 Ωm)is evident in the hydrocarbon-bearing Realgrunnen Subgroup which is reported from 48 boreholes,43 of which are used for this study.Pay zone resistivity is primarily controlled by reservoir quality(i.e.porosity and shale fraction)and fluid phase(i.e.gas,oil and water saturation).In the investigated wells,the shale dominated Hekkingen Formation exhibits enhanced resistivity compared to the background(i.e.the underlying and overlying stratigraphy),though rarely exceeds 20Ωm.Marine mudstones typically show good correlation between measured organic richness and resistivity/sonic velocity log signatures.We conclude that the resistivity contribution to the CSEM response from hydrocarbon-bearing sandstones out-weighs that of the organic rich cap rocks.  相似文献   
938.
In a viscous damping device under cyclic loading, after the piston reaches a peak stroke, the reserve movement that follows may sometimes experience a short period of delayed or significantly reduced device force output. A similar delay or reduced device force output may also occur at the damper’s initial stroke as it moves away from its neutral position. This phenomenon is referred to as the effect of “deadzone”. The deadzone can cause a loss of energy dissipation capacity and less efficient vibration control. It is prominent in small amplitude vibrations. Although there are many potential causes of deadzone such as environmental factors, construction, material aging, and manufacture quality, in this paper, its general effect in linear and nonlinear viscous damping devices is analyzed. Based on classical dynamics and damping theory, a simple model is developed to capture the effect of deadzone in terms of the loss of energy dissipation capacity. The model provides several methods to estimate the loss of energy dissipation within the deadzone in linear and sublinear viscous fluid dampers. An empirical equation of loss of energy dissipation capacity versus deadzone size is formulated, and the equivalent reduction of effective damping in SDOF systems has been obtained. A laboratory experimental evaluation is carried out to verify the effect of deadzone and its numerical approximation. Based on the analysis, a modification is suggested to the corresponding formulas in FEMA 356 for calculation of equivalent damping if a deadzone is to be considered.  相似文献   
939.
In the seismic analysis and design of structures, the true velocity and absolute acceleration are usually approximated by their corresponding pseudo-values. This approach is simple and works well for structures with small damping (say, less than 15%). When the damping of a structure is enhanced for the purpose of response reduction, it may result in large analysis and design errors. Based on theory of random vibration and the established mechanism of seismic response spectra analysis, a method is developed (1) to predict the relative velocity spectra with any damping ratio level directly from the 5% standard pseudo-acceleration spectrum; and (2) to estimate the peak absolute acceleration. The accuracy of both is validated by using two selected ensembles of ground motion records.  相似文献   
940.
Nonlinear aspects of energy dissipation in wood-panel joints   总被引:1,自引:1,他引:0  
The joints connecting vertical and horizontal elements are the "weak link" in structural systems assembled from wood panels. If they are too weak, local failures may occur, resulting in performance that is significantly below expectations. If they are too resistant, the joints may be unable to dissipate energy during vibrations, thus possibly initiating a fast progressive failure. This paper re-processes and re-elaborates the results of shaking table tests previously carried out by the author and other co-workers. The goal is to assess the feasibility of a joint which is able to dissipate energy during vibration, without degrading the connection performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号