首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   19篇
  国内免费   19篇
测绘学   21篇
大气科学   51篇
地球物理   131篇
地质学   150篇
海洋学   153篇
天文学   49篇
综合类   13篇
自然地理   12篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   7篇
  2019年   11篇
  2018年   25篇
  2017年   23篇
  2016年   41篇
  2015年   23篇
  2014年   34篇
  2013年   57篇
  2012年   18篇
  2011年   38篇
  2010年   37篇
  2009年   37篇
  2008年   17篇
  2007年   25篇
  2006年   32篇
  2005年   26篇
  2004年   26篇
  2003年   17篇
  2002年   8篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
排序方式: 共有580条查询结果,搜索用时 10 毫秒
91.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
92.
Many bulk carrier losses have been reported of late, and one of the possible causes of such casualties is thought to be the structural failure of aging hulls in rough weather. Clearly, in such cases, vessels that start out being adequate somehow become marginal later in life. Fatigue and corrosion-related potential problems may be the most important factors affecting such age related vessel damage. With respect to fatigue, extensive studies have been done worldwide both experimentally and theoretically, and the results have been applied to some extent. However, in the case of corrosion effects, additional research is still needed to better understand, clarify and address the various strength uncertainties and their effects on structural behaviour. This paper develops a probabilistic corrosion rate estimation model for the longitudinal strength members of bulk carriers. The model is based on available statistical data for corrosion of existing bulk carriers. The corrosion data collected are documented for future use.  相似文献   
93.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   
94.
95.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
96.
A variety of soft‐sediment deformation structures formed during or shortly after deposition occurs in the Cretaceous Seongpori and Dadaepo Formations of the southeastern Gyeongsang Basin exposed along coastal areas of southeastern Korean Peninsula for 0.5–2 km. These are mostly present in a fluvial plain facies, with interbedded lacustrine deposits. In this study, the features of different kinds of soft‐sediment deformation structures have been interpreted on the basis of sedimentology of structure‐bearing deposits, comparison with normal sedimentary structures, timing and mechanism of deformation, and triggering mechanisms. The soft‐sediment deformation structures can be classified into four morphological groups: (i) load structures (load casts, ball‐and‐pillow structures); (ii) soft‐sediment intrusive structures (dish‐and‐pillars, clastic dykes, sills); (iii) ductile disturbed structures (convolute folds, slump structures); and (iv) brittle deformation structures (syndepositional faulting, dislocated breccia). The most probable triggering mechanisms resulting in these structures were seismic shocks. These interpretations are based on the following field observations: (i) location of the study area within tectonically active fault zone reactivated several times during the Cretaceous; (ii) deformation structures confined to single stratigraphic levels; (iii) lateral continuity and occurrences of various soft‐sediment deformation structures in the deformed level over large areas; (iv) absence of depositional slope to indicate gravity sliding or slumping; and (v) similarity to the structures produced experimentally. The soft‐sediment deformation structures in the study areas are thus interpreted to have been generated by seismic shocks with an estimated magnitude of M > 5, representing an intermittent record of the active tectonic and sedimentary processes during the development and evolution of two formations from the late Early Cretaceous to the Late Cretaceous.  相似文献   
97.
This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three single columns were 1.8 m in diameter,reinforced by 30-D32 longitudinal reinforcements and laterally hooped by D16 reinforcements with spacing of 20 cm. The column height is 9.54 m,10.59 m and 10.37 m for Column P2,P3,and P4,respectively. Column P2 had no exposed foundation and was subjected to pseudo-dynamic tests with peak ground acceleration of 0.32 g first,followed by one cyclic loading test. Column P3 was the benchmark specimen with exposed length of 1.2 m on its foundation. The exposed length for Column P4 was excavated to 4 m,approximately 1/3 of the foundation length,to study the effect of the scouring problem to the column performance. Both Column P3 and Column P4 were subjected to cyclic loading tests. Based on the test results,due to the large dimension of the caisson foundation and the well graded gravel soil type that provided large lateral resistance,the seismic performance among the three columns had only minor differences. Lateral push tests were also conducted on the caisson foundation at Column P5. The caisson was 12 m long and had circular cross-sections whose diameters were 5 m in the upper portion and 4 m in the lower portion. An analytical model to simulate the test results was developed in the OpenSees platform. The analytical model comprised nonlinear flexural elements as well as nonlinear soil springs. The analytical results closely followed the experimental test results. A parametric study to predict the behavior of the bridge column with different ground motions and different levels of scouring on the foundation are also discussed.  相似文献   
98.
This paper aims to investigate the basic interaction characteristics of side-by-side moored vessels both numerically and experimentally. A higher-order boundary element method (HOBEM) combined with generalized mode approach is applied to analysis of motion and drift force of side-by-side moored multiple vessels (LNG FPSO, LNGC and shuttle tankers). Model tests were carried out for the same floating bodies investigated in the numerical study in regular and irregular waves. Global and local motion responses and drift forces of three vessels are compared with those of calculations. Discussions is highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.  相似文献   
99.
Sand compaction piles (SCPs) have been widely applied to the construction on the soft ground for decades, due to not only the acceleration of the consolidation but also the enhancement of strength and stiffness of ground. However, physical behaviors of SCP-improved ground have not been clearly unveiled due to complex response of two distinct materials, compacted sand and soft clay, which are having quite different mechanical characteristics. Therefore, in this study, the mechanical characteristics of SCP composite ground were investigated via triaxial compression tests on SCP-inserted clay specimens. Tests were performed elaborately with four specimens with different replacement ratios. Based on the comparisons of consolidation and shearing behaviors of tested SCP-inserted clay specimens, the SCP effects on the stiffness and strength are also investigated. Even though the SCP-inserted clay specimens show stronger and stiffer behaviors than clay-only specimens, the effects vary on strength, stiffness, and volume change with regard to the applied replacement ratios.  相似文献   
100.
In order to investigate surf zone hydrodynamics through two-dimensional numerical simulations of nearshore circulation under random wave environment, a nearshore circulation model, SHORECIRC, and a random wave model, SWAN, were combined and utilized. Using this combined model, a numerical simulation of the October 2, 1997 SandyDuck field experiment was performed. For this simulation, field topography and an input offshore spectrum were constructed using observed data sets synchronized with the experiment. The wave-breaking model in SWAN was modified by using breaker parameters varied according to bottom slope. The simulation results were compared with the experimental data, which revealed a well-developed longshore current, as well as with results using other combinations which were SHORECIRC and its original monochromatic wave-driver, and SHORECIRC and the default of SWAN. The results from the novel combined model agreed well with the experimental data. The results of the present simulation also indicate that alongshore field topography influences shear fluctuation of longshore currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号