首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30729篇
  免费   1442篇
  国内免费   2415篇
测绘学   1676篇
大气科学   3312篇
地球物理   6192篇
地质学   14693篇
海洋学   2031篇
天文学   1858篇
综合类   2855篇
自然地理   1969篇
  2024年   24篇
  2023年   111篇
  2022年   312篇
  2021年   350篇
  2020年   335篇
  2019年   297篇
  2018年   5013篇
  2017年   4282篇
  2016年   2898篇
  2015年   538篇
  2014年   482篇
  2013年   411篇
  2012年   1316篇
  2011年   3061篇
  2010年   2397篇
  2009年   2630篇
  2008年   2155篇
  2007年   2614篇
  2006年   322篇
  2005年   401篇
  2004年   582篇
  2003年   612篇
  2002年   453篇
  2001年   234篇
  2000年   259篇
  1999年   330篇
  1998年   311篇
  1997年   280篇
  1996年   231篇
  1995年   244篇
  1994年   214篇
  1993年   172篇
  1992年   151篇
  1991年   93篇
  1990年   91篇
  1989年   73篇
  1988年   53篇
  1987年   40篇
  1986年   22篇
  1985年   25篇
  1984年   26篇
  1983年   16篇
  1982年   21篇
  1981年   38篇
  1980年   31篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1976年   8篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
长江口拦门沙地区的泥沙运动规律   总被引:12,自引:0,他引:12  
依据1988年7月和12月水文观测资料,通过流,盐,沙的综合分析,认识到长江口拦门沙地区的泥沙运动有与河口其他地区不同的特点,泥沙输移在水平面上和垂直面上存在着多种循环,潮流和盐水截留大量泥沙积聚的拦门沙地区,河口在盐淡水交锋地带,除了涨,落急时段外,发现在转流时期泥沙也可能产生再悬浮,从而形成一个潮周期中出现3次或4次再悬浮的特殊规律。  相似文献   
102.
ECOM模式在丁字湾的应用   总被引:3,自引:3,他引:3  
应用河口、陆架和海洋模式 (ECOM模型 ) ,引入干湿网格法模拟潮滩涨落的改进 ,并建立丁字湾及近岸海域的三维变动边界潮流模型。该模型考虑了湾口拦门沙、湾内水道和人工围海等地形特点。计算结果与实测值比较符合良好 ,较好地刻画出丁字湾 M2 分潮潮流场的时空分布特点。  相似文献   
103.
采用新极谱技术(1.5次微分)的阳极溶出伏安滴定方法测定天然海水的铜络合容量和条件稳定常数。对测试条件、EDTA回收率和有关问题进行了探讨。青岛近岸水样的九次平行测定表明,铜的表现络合容量为3.01×10~(-7)mol/dm~3,条件稳定常数为7.34×10~7,相对标准偏差分别为9.2%和13.8%。  相似文献   
104.
本文主要介绍了1988年寿光县对虾养殖期间(5~9月)水环境和底泥环境中微生物种群的变化。据不同的地理位置,选择不同的养殖虾池;分别将水样和底泥环境中的弧菌、异养菌,及硫酸盐还原菌进行培养、分离计数。据对虾养殖期5个月的数据分析,不同的养殖虾池有不同的菌数波动范围。底泥与水环境中的菌数分布各有不同。异养菌在水样中的分布最高值为736×10~2个/ml,最低值为268.1×10~2个/ml;湿泥样中的最高值为372.7×10~4个/g最低值为125.9×10~4个/g。弧菌在水样中的最高值为12.33×10~2个/ml,最低值为0.5×10~4个/ml。据综合资料分析,对虾养殖池中的各种细菌分布,底泥高于水样,高温季节高于低温季节。底泥和水环境中有机物的含量与细菌数的分布成正比。底泥中硫酸盐还原菌的数量,是底泥环境中有机物污染程度的标志之一。根据硫酸盐还原菌的数量分布,可以有效地控制有机质(如对虾饵料)的投放量等。  相似文献   
105.
Jellyfish patch formation is investigated by conducting a drifter experiment combined with aerial photography of a sustained patch of the moon jellyfish in Hokezu Bay, Japan. Jellyfish patches are aggregations of individuals that are caused by a combination of swimming (active influence) and advection by currents (passive influence). The drifter experiment involved the injection of 49 drifters around a distinct surface patch of jellyfish within an area of approximately 300 m × 300 m. The drifters’ motion, caused only by the passive influence, was recorded in a series of 38 aerial photographs taken over approximately 1 h. The ambient uniform current field larger than the patch scale was estimated from the movement of the centroid position of drifters, while the distribution of horizontal divergence and relative vorticity around the patch was estimated from the time-derivative in areas of triangles formed by the drifters. The centroid positions of both drifters and patches moved stably toward the bay head at different speeds. The difference vector between the patch and drifter centroids was directed to the sun, and was opposite to the ambient current. The distributions of vorticity and divergence around patches exhibited inhomogeneity within the patch scale, and the drifters in this nonuniform current field aggregated near the convergence area within 1 h. The results suggest that horizontal patch formation is predominantly influenced by passive factors at the surface of Hokezu Bay. Furthermore, the upward swimming against downwelling may make sustained patch in surface layer.  相似文献   
106.
At present, the barotropic buoyant stability parameter has been derived from a vertical virtual displacement of a water parcel. The barotropic inertial stability parameter in the eccentrically cyclogeostrophic, basic current field was derived in 2003 from a horizontal cross-stream virtual displacement of a parcel. By expressing acceleration of a parcel due to a virtual displacement, which is arbitrarily sloping within a vertical section across the basic current, in terms of natural coordinates, we derived the vertical component of baroclinic buoyant stability parameter B 2 2, the horizontal component of baroclinic inertial stability parameter I 2 2, the baroclinic joint stability parameter J 2, its buoyant component B 2 and its inertial component I 2. B 2 is far greater than I 2 2, and when neglecting relative vorticity except for vertical shear, a downward convex curve of J 2 plotted against the slope of a virtual displacement follows a trend of B 2 curve. If a parcel displaces along a horizontal surface or an isopycnal surface, however, B 2 vanishes, and J 2 becomes equal to I 2. Actual parcel is apt to displace not only along the bottom slope, but also along the sea surface and an isopycnal interfacial surface, which is approximately equivalent to an isentropic surface, preferred by lateral mixing and exchange of momentum. Such actual displacement makes B 2 vanishing, and grants I 2 an important role. The present analysis of I 2 examining effects due to curvature and horizontal and vertical shear vorticities are useful in deepening our understanding of baroclinic instability in actual oceanic streams.  相似文献   
107.
108.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
109.
胶州湾是我囻黄海南部对虾的重要产卵场之一,每年4月中国对虾(Penaeus chinensis)亲体陆续进人胶州湾,进行产卵活动。繁殖的幼对虾生长迅速,至8月下旬虾群平均体长可达13cm左右,成为秋汛渔业的重要捕捞对象。近年由于捕捞力量加强等诸多因素,湾内对虾的年渔获量由70年代的2-5t,减至80年代的1-2t。虽然1984年以来有关部门实施对虾增殖放流,对虾资源量有所回升,但是因春季洄游的亲体(雌虾)数量锐减,7-8月间又使用各种网具违捕幼虾,因而极大地损害了幼虾资源。刘瑞玉等(1992)曾调查研究了胶州湾对虾生物资源。本文根据作者1991年以来5月和8月的对虾拖网调査资料,对胶州湾对虾资源的生态分布及其变动原因进行了分析研究,对加强管理和保护幼虾资源,以及提高对虾产量有极其重要的意义。  相似文献   
110.
莱州湾东部滨海水域第四纪沉积及古地理特征   总被引:5,自引:0,他引:5  
本文通过对6个钻孔和461km浅层地震剖机测量获得的测年、微古、孢粉、藻类、古地磁以及岩持征和地震反射界面等资料的综合分析,将本区第四系划分为中更新统、上更新统和全新统,对各时期的沉积进行了较详细的阐述,并对不同时期的沉积相特征和古地理环境的变化进行了初步地揭示。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号