首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   13篇
  国内免费   4篇
测绘学   8篇
大气科学   24篇
地球物理   88篇
地质学   115篇
海洋学   36篇
天文学   22篇
自然地理   26篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   10篇
  2016年   9篇
  2015年   8篇
  2014年   4篇
  2013年   24篇
  2012年   10篇
  2011年   12篇
  2010年   14篇
  2009年   12篇
  2008年   13篇
  2007年   26篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   13篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1989年   4篇
  1985年   2篇
  1984年   5篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1947年   3篇
  1927年   2篇
  1921年   2篇
  1920年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
31.
E.N. Wells  J. Veverka  P. Thomas 《Icarus》1984,58(3):331-338
An experimental study was undertaken to determine how the spectral and photometric properties of representative Martian areas are affected by fallout of atmospheric dust suspended during dust forms. A laboratory apparatus was used to simulate the uniform fallout and deposition of particles 1 to 5 μm in diameter. Spectral measurements from 0.4- to 1.2-μm wavelengths and photometric measurements at several wavelengths were made for a number of Mars-analog materials before and after deposition of 6 × 10?5 to 1.5 × 10?3 g/cm2 of simulated fallout. These results indicate that the spectral and photometric properties of Martian regions can be affected significantly even by minute amounts of fallout. For instance, the reflectance at 0.56 μm of an average dark area will increase by 35% after deposition of only 9 × 10?5 g/cm2, and by 70% after deposition of 1.5 × 10?4 g/cm2. Thus the fallout from even one dust storm season (~2 × 10?3 g/cm2) is sufficient to change significantly the spectral and photometric characteristics of the substrate material, if the fallout were ubiquitous over the surface and if no competing processes of dust removal from surface grains occured.  相似文献   
32.
A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.  相似文献   
33.
Quaternary evolution of Cedar Creek alluvial fan, montana   总被引:1,自引:0,他引:1  
Cedar Creek alluvial fan is a textbook example of an alluvial fan because of its fan shape with smooth, concentric contours and excellent symmetry. Similar planimetric shapes have been used to infer uniform fan deposition; however, Cedar Creek alluvial fan is composed of four fan deposits of Quaternary age, Qf1 (oldest) to Qf4 (youngest), indicating that fan deposition was nonuniform in both time and space. Field studies indicate that deposition of Cedar Creek alluvial fan is related to glaciofluvial outwash activity during the Pleistocene and upper-fan entrenchment and lower-fan deposition during the Holocene.Qf1 and Qf2 deposits are sub-horizontally bedded, clast-supported sandy gravels uniformly imbricated upfan. Comparison of soil profiles developed in these deposits to radiogenically-dated chronosequences within the region indicates that Qf1 and Qf2 are correlative with Bull Lake and Pinedale-age deposits, respectively. These relationships are substantiated by physical correlation of Qf1 and Qf2 with Bull Lake and Pinedale moraines, respectively, in the Cedar Creek drainage basin. The sedimentology and timing of Qf1 and Qf2 indicate deposition in high-energy, proglacial, braided streams. Furthermore, the present morphology of Cedar Creek alluvial fan was established largely during aggradation of Qf1 and Qf2 when sediment supply to the fan was sufficient to activate 60% to greater than 90% of the total fan area. During Bull Lake glaciation, the apex of Qf1 deposition formed the apex of Cedar Creek alluvial fan as Qf1 covered more than 90% of the present fan area. During Pinedale glaciation, Qf2 deposition shifted downfan; Qf2 is inset into Qf1 above the intersection point, but below the intersection point it eroded and/or buried Qf1 as it activated as much as 60% of the fan area.Qf3 and Qf4, comprising 21% of the fan area, are inset into Qf2 in the lower fan area. Soil development in Qf3 and Qf4 deposits indicate episodic deposition and entrenchment beginning in early Holocene and continuing to present. A post-glacial decrease in sediment supply to Cedar Creek alluvial fan is indicated by sediment storage within the Cedar Creek drainage basin. Decreased sediment supply to the fan resulted in upper-fan entrenchment of Qf2 and deposition of Qf3 and Qf4 in the lower-fan area.  相似文献   
34.
The increased frequency of wildfires in the United States has become a common prediction associated with the build-up of greenhouse gases. In this investigation, variations in annual wildfire data in Yellowstone National Park are compared to variations in historical climate conditions for the area. Univariate and multivariate analytical techniques reveal that (a) summer temperatures in the Park are increasing, (b) January-June precipitation levels are decreasing, and (c) variations in burn area within the Park are significantly related to the observed variations in climate. Outputs from four different general circulation model simulations for 2 × CO2 are included in the analyses; model predictions for increasing aridity in the Yellowstone Park area are generally in agreement with observed trends in the historical climate records.  相似文献   
35.
We present new experimental results on the mechanisms through which steady two-dimensional density currents lead to the formation of a stratification in a closed basin. A motivation for this work is to test the underlying assumptions in a diffusive “filling box” model that describes the oceanic thermohaline circulation (Hughes, G.O. and Griffiths, R.W., A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions, Ocean Modeling, 2005, submitted.). In particular, they hypothesized that a non-uniform upwelling velocity is due to weak along-slope entrainment in density currents associated with a large horizontal entrainment ratio of E eq ?~?0.1. We experimentally measure the relationship between the along-slope entrainment ratio, E, of a density current to the horizontal entrainment ratio, E eq, of an equivalent vertical plume. The along-slope entrainment ratios show the same quantitative decrease with slope as observed by Ellison and Turner (, 6, 423–448.), whereas the horizontal entrainment ratio E eq appears to asymptote to a value of E eq?=?0.08 at low slopes. Using the measured values of E eq we show that two-dimensional density currents drive circulations that are in good agreement with the two-dimensional filling box model of Baines and Turner (Baines, W.D. and Turner, J.S., Turbulent buoyant convection from a source in a confined region, J. Fluid. Mech., 1969, 37, 51–80.). We find that the vertical velocities of density fronts collapse onto their theoretical prediction that U =-2?2/3 B 1/3 E eq 2/3 (H/R) ζ, where U is the velocity, H the depth, B the buoyancy flux, R the basin width, E eq the horizontal entrainment ratio and?ζ?= z/H the dimensionless depth. The density profiles are well fitted with?Δ?= 2?1/3 B 2/3 E eq ?2/3 H -1 [ln(ζ )?+?τ ], where?τ?is the dimensionless time. Finally, we provide a simple example of a diffusive filling box model, where we show how the density stratification of the deep Caribbean waters (below 1850?m depth) can be described by a balance between a steady two-dimensional entraining density current and vertical diffusion in a triangular basin.  相似文献   
36.
37.
A significant difference exists between estimates of contaminant atmospheric transport and dispersion calculated by an ensemble-averaged model and the turbulent details of any particular atmospheric transport and dispersion realization. In some cases, however, it is important to be able to make inferences of these realizations using ensemble-averaged models. It is possible to make such inferences if there are sensors in the field to report contaminant concentration observations. Any information determined about the atmospheric transport and dispersion realization can then be assimilated into a forecast model. This approach can enhance the accuracy of the atmospheric transport and dispersion forecast of a particular event. This work adopts that approach and reports on a genetic algorithm used to optimize the variational problem. Given contaminant sensor measurements and a transport and dispersion model, one can back-calculate unknown source and meteorological parameters. In this case, we demonstrate the dynamic recovery of unknown meteorological variables, including the transport variables that comprise the “outer variability” (wind speed and wind direction) and the dispersion variables that comprise the “inner variability” (contaminant spread). The optimization problem is set up in an Eulerian grid space, where the comparison of the concentration field variable between the predictions and the observations forms the cost function. The transport and dispersion parameters, which are determined from the optimization, are in Lagrangian space. This calculation is applied to continuous and instantaneous releases in a horizontally homogeneous wind field such as that observed during traditional transport and dispersion field experiments. The method proves to be successful at recovering the unknown transport and dispersion parameters for a numerical experiment.  相似文献   
38.
Key limitations of integrated assessment models (IAMs) are their highly stylized and aggregated representation of climate damages and associated economic responses, as well as the omission of specific investments related to climate change adaptation. This paper proposes a framework for modeling climate impacts and adaptation that clarifies the relevant research issues and provides a template for making improvements. We identify five desirable characteristics of an ideal integrated assessment modeling platform, which we elaborate into a conceptual model that distinguishes three different classes of adaptation-related activities. Based on these elements we specify an impacts- and adaptation-centric IAM, whose optimality conditions are used to highlight the types of functional relationships necessary for realistic representations of adaptation-related decisions, the specific mechanisms by which these responses can be incorporated into IAMs, and the ways in which the inclusion of adaptation is likely to affect the simulations’ results.  相似文献   
39.
Achache et al.'s averages over 10 west European observatories of the annual mean magnetic components X, Y, Z are studied from 1953 to 1979. A 1970 jerk is fitted to the data by least squares, and the fit is quantitatively compared with that of a polynomial having the same number of free parameters as the jerk (a quintic). A crude correction for the 11-y sunspot cycle is also attempted. The jerk and quintic are equally good fits to X, the jerk is clearly better for Y, and the quintic is modestly better for Z. The jerk amplitudes of X and Z but not Y depend heavily on whether a sunspot correction is made, and such a correction may be required to estimate the energy of the internal part of the jerk in the manner of Malin and Hodder. The sunspot correction to Y probably cannot be brought above the noise because it is small and highly correlated with both the jerk and the quintic. The sunspot corrections to X and Z are statistically significant but depend on whether the core signal is taken as a jerk or a quintic. Courtillot and Le Mouël's physical model for the jerk predicts that the jerk amplitudes of X, Y, Z will be proportional to the longitudinal derivatives of X, Y and Z. This prediction is roughly verified for the magnitudes but not the signs; it is just possible that the signs in X and Z are not statistically significant.  相似文献   
40.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号