首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   49篇
  国内免费   13篇
测绘学   15篇
大气科学   51篇
地球物理   257篇
地质学   197篇
海洋学   72篇
天文学   142篇
自然地理   185篇
  2021年   11篇
  2020年   9篇
  2019年   17篇
  2018年   17篇
  2017年   13篇
  2016年   30篇
  2015年   19篇
  2014年   18篇
  2013年   46篇
  2012年   26篇
  2011年   34篇
  2010年   20篇
  2009年   48篇
  2008年   46篇
  2007年   37篇
  2006年   32篇
  2005年   32篇
  2004年   46篇
  2003年   27篇
  2002年   39篇
  2001年   32篇
  2000年   19篇
  1999年   15篇
  1998年   21篇
  1997年   21篇
  1996年   18篇
  1995年   9篇
  1994年   12篇
  1993年   12篇
  1992年   11篇
  1991年   24篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   15篇
  1986年   6篇
  1985年   17篇
  1984年   12篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1975年   7篇
  1974年   3篇
  1973年   6篇
  1970年   3篇
  1965年   2篇
  1924年   2篇
排序方式: 共有919条查询结果,搜索用时 265 毫秒
311.
312.
牙形石SHRIMP微区原位氧同位素分析方法   总被引:7,自引:0,他引:7  
氧同位素温度计已被用于古温度变化研究多年。生物化石磷酸盐中的氧同位素组成对古气候环境变化响应灵敏,牙形石在古生代到中生代的古海洋地层中广泛存在,并具有较为重要的地层学意义,是研究古温度变化的最佳样品之一。SHRIMP具备高分辨、高灵敏、高精度和微量及原位微区分析的特点,可以进行20μm范围内的原位(in-situ)同位素分析。本文介绍了作者利用SHRIMP IIe-MC建立的牙形石微区原位氧同位素分析方法,这是国内关于该方法的首次报导。本文对磷灰石标准样Durango进行了测定,连续七昼夜获得的253次测定结果,平均值为δ18 Oapatite=9.78‰±0.29‰,与该标准参考值δ18 Oapatite=9.81‰±0.25‰(Williams,未刊资料)一致。作者并以二叠系—三叠系界线上下海水温度变化研究为示范,对采自西藏文布当桑二叠系—三叠系剖面上的49个层位中的237件牙形石样品进行了914个氧同位素分析,为研究二叠系—三叠系界线上发生的生物灭绝事件前后的海水温度变化提供了可靠详实的数据。  相似文献   
313.
Abstract

Two unconformity‐bound groups of volcanic rocks and associated sediments (El Sherana and Edith River Groups) separate the older Pine Creek Geosyncline metasediments from platform cover of the McArthur Basin. Dominated by intersecting NW and ENE rift systems, the volcanics are genetically related to an extensional tectonic system which was also active during deposition of the Pine Creek Geosyncline sequence. In contrast, the younger platform cover was deposited in a relatively stable environment. The rift valleys were filled with rhyolite flows, ignimbrite and ill‐sorted arenite and rudite, and flyschoid sediments spread onto adjacent lands. Following tight upright folding, granite intrusion and erosion, an extensive ignimbrite sheet (=6000 km2) spread from a centre probably at the intercept of the two rifts. Microgranite at this intersection was possibly emplaced in the evacuated magma chamber. The volcanic sequences were deeply eroded and weathered before platform cover deposition began. The platform sediments, represented in the area by the Kombolgie Formation, were deposited from about 1690 Ma to 1650 Ma, and their base is taken as the closest stratigraphic indicator of the boundary between the Early and Middle Proterozoic.  相似文献   
314.
The New Geophysics   总被引:2,自引:0,他引:2  
New Geophysics of critically microcracked rock is a new understanding of fluid‐rock deformation that matches much of the behaviour of in situ rock observed throughout the Earth's crust and uppermost mantle. The behaviour of rock in New Geophysics: is self‐similar; can be monitored, calculated, predicted, even in principle controlled; prevails in almost all rocks; and has ‘butterfly‐effect’ sensitivity. All of these remarkable features (except controllability) have been observed, in some cases many times. However, New Geophysics is innovative, controversial, and currently “ridiculed” and “violently opposed” (Schopenhauer Stages 1 and 2), and is difficult to get published via consensus‐driven peer‐review. Consequently, in the last 10 years, various aspects of New Geophysics have been published in some 20 different journals and conference proceedings making it difficult to access by the general reader. This review presents a synopsis of what is believed to be a fundamental advance in solid Earth geoscience.  相似文献   
315.
316.
317.
318.
This paper assesses river channel management activities in the context of the interaction between coarse sediment delivery, climate change, river channel response and flood risk. It uses two main sources of evidence: (1) an intensive instrumentation of an upland river catchment using both traditional hydrometric and novel sediment sensing methods; and (2) a sediment delivery model that combines a treatment of sediment generation from mass failure with a treatment of the connectivity of this failed material to the drainage network. The field instrumentation suggests that the precipitation events that deliver sediment from hillslopes to the drainage network are different to those that transfer sediment within the network itself. Extreme events, that could occur at any time in the year (i.e. they are not dependent on wet antecedent conditions), were crucial for sediment delivery. However, sustained high river flows were responsible for the majority of transfer within the river itself. Application of three downscaling methods to climate model predictions for the 2050s and 2080s suggested a significant increase in the number and potential volume of delivery events by the 2050s, regardless of the climate downscaling scenario used. First approximations suggested that this would translate into annual bed level aggradation rates of between 0.10 and 0.20 m per year in the downstream main channel reaches. Second, the importance of this delivery for flood risk studies was confirmed by simulating the effects of 16 months of measured in-channel simulation with river flows scaled for climate change to the 2050s and 2080s. Short-term sedimentation could result in similar magnitude increases in inundated area for 1 in 0.5 and 1 in 2 year floods to those predicted for the 2050s in relation to increases in flow magnitude. Finally, we were able to develop an alternative approach to river management in relation to coarse sediment delivery, based upon reducing the rates of coarse sediment delivery through highly localised woodland planting, under the assumption that reducing delivery rates should reduce the rate of channel migration and hence the magnitude of the bank erosion problem. Thus, the paper demonstrates the need to conceptualise local river management problems in upland river environments as point scale manifestations of a diffuse sediment delivery process, with a much more explicit focus on the catchment scale, if our river systems are to become more insulated from the impacts of future climate changes.  相似文献   
319.
We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influence the delivery of sediment and total organic carbon (TOC) over the past 50–60 years. Sediment cores were collected from sites within the Delta representing the Sacramento River (SAC), the San Joaquin River (SJR), and Franks Tract (FT), a flooded agricultural tract. A variety of anthropogenic tracers including 137Cs, total DDE (∑DDE) and brominated diphenyl ether (BDE) congeners were used to quantify sediment accumulation rates. This information was combined with total organic carbon (TOC) profiles to quantify rates of TOC accumulation. Across the three sites, sediment and TOC accumulation rates were four to eight-fold higher prior to 1972. Changes in sediment and TOC accumulation were coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Radiocarbon content of TOC indicated that much of the carbon delivered to the Delta is “pre-aged” reflecting processing in the Delta watershed or during transport to the sites rather than an input of predominantly contemporary carbon (e.g., 900–1400 years BP in surface sediments and 2200 yrs BP and 3610 yrs BP at the base of the SJR and FT cores, respectively). Together, these data suggest that human activities have altered the amount and age of TOC accumulating in the Delta since the 1940s.  相似文献   
320.
The recovery of Santa Rosa Island in northwest Florida is characterized following Hurricane Katrina (September 2005), which was preceded by Hurricanes Ivan (2004) and Dennis (2005). Beach and dune recovery were quantified to the east and west of Pensacola Beach through a comparison of LiDAR data collected immediately following Hurricane Katrina and in July 2006 after almost a year of recovery. East of Pensacola Beach (the Santa Rosa Unit), the shoreline retreated by an average of 64 m during the 2004–2005 hurricane season and recovered by an average of 19 m. To the west of Pensacola Beach (the Fort Pickens Unit), the shoreline retreated by an average of 30 m, and while no significant shoreface recovery was observed, the presence of vegetation on low‐profile dunes promoted backshore accretion. It is found that beachface recovery in the Santa Rosa Unit and backshore accretion in the Fort Pickens Unit occurred at the widest sections of the island where the pre‐storm profile volume had been relatively large and overwash penetration was at a minimum. The narrow sections of the island (between cuspate headlands) had a smaller profile volume before the storms, leading to greater overwash penetration and in some cases island breaching in both sections, which limited the volume of sediment available for shoreface recovery. The alongshore variation in recovery is not only related to the island width, but also the offshore bathymetry, height of the pre‐storm dunes and the overwash penetration. If sufficient time is allowed for the return of vegetation and the recovery of the dunes, the variations in storm impact observed during Hurricane Ivan will be reinforced during subsequent storms. In this respect, the level of impact during subsequent storms and the ability of the island to recover will depend on the frequency of storm events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号