首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   49篇
  国内免费   13篇
测绘学   15篇
大气科学   51篇
地球物理   257篇
地质学   197篇
海洋学   72篇
天文学   142篇
自然地理   185篇
  2021年   11篇
  2020年   9篇
  2019年   17篇
  2018年   17篇
  2017年   13篇
  2016年   30篇
  2015年   19篇
  2014年   18篇
  2013年   46篇
  2012年   26篇
  2011年   34篇
  2010年   20篇
  2009年   48篇
  2008年   46篇
  2007年   37篇
  2006年   32篇
  2005年   32篇
  2004年   46篇
  2003年   27篇
  2002年   39篇
  2001年   32篇
  2000年   19篇
  1999年   15篇
  1998年   21篇
  1997年   21篇
  1996年   18篇
  1995年   9篇
  1994年   12篇
  1993年   12篇
  1992年   11篇
  1991年   24篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   15篇
  1986年   6篇
  1985年   17篇
  1984年   12篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1975年   7篇
  1974年   3篇
  1973年   6篇
  1970年   3篇
  1965年   2篇
  1924年   2篇
排序方式: 共有919条查询结果,搜索用时 62 毫秒
191.
192.
The Southern Ocean plays an important role in the global overturning circulation as a significant proportion of deep water is converted into intermediate and deeper water masses in this region. Recently, a secular trend has been reported in wind stress around the Southern Ocean and it is thought theoretically that the strength of the ACC is closely related to wind stress, so one consequence should be a corresponding increase in ACC transport and hence changes in the rate of the global overturning. There are no long-term data sets of ACC transport and so we must examine other data that may also respond to changing wind stress. Here we calculate surface currents in Drake Passage every seven days over 11.25 years from 1992 to 2004. We combine surface velocity anomalies calculated from satellite altimeter sea surface heights with measured surface currents. Since 1992, the UK has regularly occupied WOCE hydrographic section SR1b across the ACC in Drake Passage. From seven hydrographic sections surface currents are estimated by referencing relative geostrophic velocities from CTD sections with current measurements made by shipboard and lowered acoustic Doppler current profilers. Combining the seven estimates of surface currents with the altimeter data reduces bias in the estimates of average currents over time through Drake Passage and we show that surface current anomalies estimated by satellite and in situ observations are in good agreement. The strongest surface currents are found in the Subantarctic and Polar Fronts with average speeds of 50 cm/s and 35 cm/s, respectively and are inversely correlated, so that maximum westward flow in one corresponds to minimum westward flow in the other. The average cross-sectional weighted surface velocity from 1992 to 2004 is 16.7 ± 0.2 cm/s. A spectral analysis of the average surface current has only weakly increasing energy at higher frequencies and there is no dominant mode of variability. The standard deviation of the seven day currents is 0.68 cm/s and a running 12 month average has only a slightly smaller standard deviation of 0.52 ± 0.16 cm/s. The southern annular mode (SAM) measures the circumpolar average of wind stress and like the surface currents its spectrum has slightly increased energy at frequencies greater than 1 cpy. A cospectral analysis of these, averaging cospectra of five slightly overlapping 36 month segments improve statistical reliability, suggests that there is coherence between them at 1 cpy with the currents leading changes in the Southern annular mode. We conclude that the SAM and average Drake Passage surface currents are weakly correlated with no dominant co-varying modes, and hence predicting Southern Ocean transport variability from the SAM is not likely to give significant results and that secular trends in surface currents are likely to be masked by weekly and interannual variability.  相似文献   
193.
194.
195.
The Central Graben of the North Sea is characterised by high levels of overpressure (up to 40 MPa overpressure at 4500 m depth). We present pressure data for Cenozoic and Mesozoic reservoirs. Palaeocene sandstones control pressures in Tertiary mudstones and Cretaceous Chalk by acting as a regional ‘drain’. We divide the Jurassic into 18 pressure cells. The rift structure of the Graben controls the magnitude of pressure in each cell. Lateral hydraulic communication exists over 10 km distance between deeply-buried terraces (> 5000 m depth) and shallow structural highs (< 4500 m depth). Lateral communication increases pressure in the structurally-elevated sandstones to the minimum stress. This dynamic process produces zones of vertical fluid flow on the Forties-Montrose High, termed Leak Points. Vertical flow at Leak Points produces a 20 MWm−2 heat flow anomaly and controls hydrocarbon retention. Leak Points are water-wet, while deep terraces in hydraulic communication with Leak Points are condensate-bearing. The Kimmeridge Clay Fm. forms the pressure seal in deep terraces.  相似文献   
196.
Recent studies increasingly point to the interface between the world's atmosphere and hydrosphere (the sea-surface microlayer) as an important biological habitat and a collection point for anthropogenic materials. Newly developed sampling techniques collect different qualitative and quantitative fractions of the upper sea surface from depths of less than one micron to several centimeters.The microlayer provides a habitat for a biota, including the larvae of many commercial fishery species, which are often highly enriched in density compared to subsurface water only a few cm below. Common enrichments for bacterioneuston, phytoneuston, and zooneuston are 102−104, 1−102, and 1−10, respectively. The trophic relationships or integrated functioning of these neustonic communities have not been examined.Surface tension forces provide a physically stable microlayer, but one which is subjected to greater environmental and climatic variation than the water column. A number of poorly understood physical processes control the movement and flux of materials within and through the microlayer. The microlayer is generally coated with a natural organic film of lipid and fatty acid material overlying a polysaccharide protein complex.The microlayer serves as both a source and a sink for materials in the atmosphere and the water column. Among these materials are large quantities of anthropogenic substances which frequently occur at concentrations 102−104 greater than these in the water column. These include plastics, tar lumps, polyaromatic hydrocarbons, chlorrinated hydrocarbons, and potentially toxic metals, such as, lead, copper, zinc, and nickel. How the unique processes occurring in the microlayer affect the fate of anthropogenic substances is not yet clear. Many important questions remain to be examined.  相似文献   
197.
198.
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment‐scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip‐related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
199.
200.
For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号