首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   13篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   66篇
地质学   89篇
海洋学   23篇
天文学   11篇
综合类   1篇
自然地理   21篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   32篇
  2012年   18篇
  2011年   23篇
  2010年   12篇
  2009年   17篇
  2008年   11篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
41.
To enhance global water use assessment, the WaterGAP3 model was improved for back-calculating domestic, manufacturing and thermoelectric water uses until 1950 for 177 countries. Model simulations were carried-out on a national scale to estimate water withdrawals and consumption as well as cooling water required for industrial processes and electricity production. Additionally, the amount of treated and untreated wastewater as generated by the domestic and manufacturing sectors was modeled. In the view of data availability, model simulations are based on key socio-economic driving forces and thermal electricity production. Technological change rates were derived from statistical records in order to consider developments in water use efficiency, which turned out to have a crucial role in water use dynamics. Simulated domestic and industrial water uses increased from ca. 300 km3 in 1950 to 1345 km3 in 2010, 12% of which were consumed and 88% of which were discharged back into freshwater bodies. The amount of domestic and manufacturing wastewater increased considerably over the last decade, but only half of it was untreated. The downscaling of the untreated wastewater volume to river basin scale indicates a matter of concern in East and Southeast Asia, Northern Africa, and Eastern and Southern Europe. In order to reach the Millennium Development Goals, securing water supply and the reduction of untreated wastewater discharges should be amongst the priority actions to be undertaken. Population growth and increased prosperity have led to increasing water demands. However, societal and political transformation processes as well as policy regulations resulting in new water-saving technologies and improvements counteract this development by slowing down and even reducing global domestic and industrial water uses.  相似文献   
42.
This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T?>?900 °C) granulite facies metamorphism. New U–Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α  g?1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91?±?0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040–990 Ma; M2: 940–930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U–Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040–930 Ma) in the UHT zone, 85 My (ca. 1040–955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040–1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.  相似文献   
43.
The post‐impact orogenic evolution of the world class Ni–Cu–PGE Sudbury mining camp in Ontario remains poorly understood. New temporal constraints from ore‐controlling, epidote–amphibolite facies shear zones in the heavily mineralised Creighton Mine (Sudbury, South Range) illuminate the complex orogenic history of the Sudbury structure. In situ U–Pb dating of shear‐hosted titanite grains by LA‐ICP‐MS reveals new evidence for shear zone reworking during the Yavapai (ca. 1.77–1.7 Ga), Mazatzalian–Labradorian (1.7–1.6 Ga) and Chieflakian–Pinwarian (1.5–1.4 Ga) accretionary events. The new age data show that the effects of the Penokean orogeny (1.9–1.8 Ga) on the structural architecture of the Sudbury structure have been overestimated. At a regional scale, the new titanite age populations corroborate that the Southern Province of the Canadian Shield documents the same tectonothermal episodes that are recorded along orogenic strike within the accretionary provinces of the Southwestern United States.  相似文献   
44.
45.
46.
Criteria used to identify Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfer absorption bands in electronic spectra are reviewed and compared to the characteristics of unperturbed Fe2+ crystal field bands and those that are intensified by interaction with Fe3+. Band energy is the least definitive diagnostic criterion. Changes in band intensity with temperature are also of limited value. Large widths are the most reliable characteristic of charge transfer bands. New optical absorption spectra are presented for euclase, as well as 80 K spectra of rockbridgeite, babingtonite and lazulite. Comparison of optical spectra to magnetic susceptibility measurements for rockbridgeite and babingtonite provides support for recent theories regarding the effect of magnetic coupling on the variation of charge transfer intensity with temperature.  相似文献   
47.
The Memphis aquifer in southwestern Tennessee is a confined to semi-confined unconsolidated sand aquifer and is the primary municipal water source for the Memphis metropolitan area. Leakage of modern water from shallow unconfined aquifers through the upper Claiborne confining unit locally degrades water quality in the Memphis aquifer and makes the aquifer more vulnerable to contamination. Major solute chemistry, tritium, and 3H/3He data were used to investigate the source and mixing proportions of modern water in the Memphis aquifer in the Davis well field, Memphis, Tennessee. Water quality in several production wells in the Davis well field has declined over the past 30 years, mainly through increased total dissolved solids, iron, alkalinity, and hardness. Trends in chemical data, tritium, and other hydrogeologic data support a source for the leakage from the Mississippi River Valley Alluvial aquifer. Mixing proportions of alluvial water in production well water obtained by inverse chemical modeling with PHREEQCi range from 7 to 45%. For two of the production wells, MLGW 414 and 432, 3H/3He data yield mixing ratios similar to those obtained from PHREEQCi in three of four cases; the dissimilar ratio is likely due to a poor solution from the PHREEQCi inverse modeling. Modeling of the age distribution obtained from MLGW 414 and 432 using an exponential-piston flow model (EPM) with an inverse solution computer code yielded mixed results. The EPM solution obtained for MLGW 414 converged with difficulty only for a 5-year transit time in the shallow aquifer and is consistent with a source from the Mississippi River Valley Alluvial aquifer; however, the modeled age of the water is greater than that observed. In comparison, the EPM solution for MLGW 432 converged for the 5- and 7-year transit periods in the shallow aquifer and yielded model ages consistent with observed 3H/3He ages; however, the extent of the maximum radii for infiltration source is not consistent with a Mississippi River Valley Alluvial aquifer source. Other potential sources for leakage to MLGW 432 include water from the Fluvial-terrace aquifer migrating along a fault east of the well field or infiltration of water from a lake south of the well field.  相似文献   
48.
It has recently been shown that inner shelf waters of NE Monterey Bay, California function as an “extreme bloom incubator”, frequently developing dense “red tide” blooms that can rapidly spread. Located within the California Current upwelling system, this open bay is strongly influenced by oceanographic dynamics resulting from cycles of upwelling favorable winds and their relaxation and/or reversal. Different wind forcing causes influx of different water types that originate outside the bay: cold nutrient-rich waters during upwelling and warm nutrient-poor waters during relaxation. In this study, we examine how the bay's bloom incubation area can interact with highly variable circulation to cause red tide spreading, dispersal and retention. This examination of processes is supported by satellite, airborne and in situ observations of a major dinoflagellate bloom during August and September of 2004. Remote sensing of high spatial, temporal and spectral resolution shows that the bloom originated in the NE bay, where it was highly concentrated in a narrow band along a thermal front. Upwelling circulation rapidly spread part of the bloom, mixing cool waters of an upwelling filament with warm bloom source waters as they spread. Vertical migration of the dinoflagellate populations was mapped by autonomous underwater vehicle surveys through the spreading bloom. Following bloom expansion, a two-day wind reversal forced intrusion of warm offshore waters that dispersed much of the bloom. Upwelling winds then resumed, and the bloom was further dispersed by an influx of cold water. Throughout these oceanographic responses to changing winds, an intense bloom persisted in sheltered waters of the NE bay, where extreme blooms are most frequent and intense. Microscopic examination of surface phytoplankton samples from the central bay showed that spreading of the bloom from the NE bay and mixing with regional water masses resulted in significantly increased abundance of dinoflagellates and decreased abundance of diatoms. Similar dinoflagellate bloom incubation sites are indicated in other areas of the California Current system and other coastal upwelling systems. Through frequent bloom development and along-coast transports, relatively small incubation sites may significantly influence larger regions of the coastal marine ecosystems in which they reside.  相似文献   
49.
John D. Monnier  Stefan Kraus  Michael J. Ireland  Fabien Baron  Amelia Bayo  Jean-Philippe Berger  Michelle Creech-Eakman  Ruobing Dong  Gaspard Duchêne  Catherine Espaillat  Chris Haniff  Sebastian Hönig  Andrea Isella  Attila Juhasz  Lucas Labadie  Sylvestre Lacour  Stephanie Leifer  Antoine Merand  Ernest Michael  Stefano Minardi  Christoph Mordasini  David Mozurkewich  Johan Olofsson  Claudia Paladini  Romain Petrov  Jörg-Uwe Pott  Stephen Ridgway  Stephen Rinehart  Keivan Stassun  Jean Surdej  Theo ten Brummelaar  Neal Turner  Peter Tuthill  Kerry Vahala  Gerard van Belle  Gautam Vasisht  Ed Wishnow  John Young  Zhaohuan Zhu 《Experimental Astronomy》2018,46(3):517-529
The Planet Formation Imager (PFI, www.planetformationimager.org) is a next-generation infrared interferometer array with the primary goal of imaging the active phases of planet formation in nearby star forming regions. PFI will be sensitive to warm dust emission using mid-infrared capabilities made possible by precise fringe tracking in the near-infrared. An L/M band combiner will be especially sensitive to thermal emission from young exoplanets (and their disks) with a high spectral resolution mode to probe the kinematics of CO and H2O gas. In this paper, we give an overview of the main science goals of PFI, define a baseline PFI architecture that can achieve those goals, point at remaining technical challenges, and suggest activities today that will help make the Planet Formation Imager facility a reality.  相似文献   
50.
Population dynamics of crayfish (Paranephrops planifrons White) in streams draining native forest and pastoral catchments, Waikato, New Zealand, were investigated from September 1996 to July 1998. Crayfish densities were generally greater in native forest streams because of high recruitment over summer, but varied greatly between streams in both land uses. Peak densities in summer were 9 crayfish m‐2 in native forest and 6 crayfish m‐2 in pasture streams, but peak biomass in summer was much greater in pasture streams. Mark‐recapture data showed that crayfish, particularly juveniles, in pasture streams grew faster than in native forest streams, through both greater moult frequency and larger moult increments. Females reached reproductive size at c. 20 mm orbit‐carapace length (OCL) after their first year in pasture streams, but after 2 years in native forest streams. Annual degree days >10°C appeared to explain the differences in the timing of life cycles. Estimates of annual crayfish production (range = 0.8–3.4 g dry weight m‐2 year–1) were similar in both land uses, and P/B ratios were between 0.95 and 1.2. Despite deforestation and conversion to pasture, crayfish in these Waikato hill‐country streams have maintained similar levels of annual production to those in native forest streams, although juvenile growth rates have increased and longevity has decreased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号