首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1032篇
  免费   49篇
  国内免费   15篇
测绘学   50篇
大气科学   158篇
地球物理   247篇
地质学   413篇
海洋学   48篇
天文学   92篇
综合类   2篇
自然地理   86篇
  2023年   6篇
  2022年   7篇
  2021年   25篇
  2020年   29篇
  2019年   25篇
  2018年   53篇
  2017年   29篇
  2016年   53篇
  2015年   35篇
  2014年   50篇
  2013年   63篇
  2012年   55篇
  2011年   63篇
  2010年   54篇
  2009年   78篇
  2008年   58篇
  2007年   41篇
  2006年   49篇
  2005年   42篇
  2004年   37篇
  2003年   32篇
  2002年   15篇
  2001年   19篇
  2000年   17篇
  1999年   12篇
  1998年   18篇
  1997年   12篇
  1996年   11篇
  1995年   12篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   9篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1980年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1096条查询结果,搜索用时 15 毫秒
11.
International Journal of Earth Sciences - Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were...  相似文献   
12.
13.
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ65Cu, δ66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g−1 Cu and 2084 μg g−1 Zn in the organic horizons. The δ65Cu values varied little (−0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ66ZnIRMM values were isotopically lighter in ash (−0.41‰) and organic horizons (−0.85‰ to −0.47‰) than in bedrock (−0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.  相似文献   
14.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   
15.
Microphysical measurements of orographic fog were performed above a montane cloud forest in northeastern Taiwan (Chilan mountain site). The measured parameters include droplet size distribution (DSD), absolute humidity (AH), relative humidity (RH), air temperature, wind speed and direction, visibility, and solar short wave radiation. The scope of this work was to study the short term variations of DSD, temperature, and RH, with a temporal resolution of 3?Hz. The results show that orographic fog is randomly composed of various air volumes that are intrinsically rather homogeneous, but exhibit clear differences between each other with respect to their size, RH, LWC, and DSD. Three general types of air volumes have been identified via the recorded DSD. A statistical analysis of the characteristics of these volumes yielded large variabilities in persistence, RH, and LWC. Further, the data revealed an inverse relation between RH and LWC. In principle, this finding can be explained by the condensational growth theory for droplets containing soluble or insoluble material. Droplets with greater diameters can exist at lower ambient RH than smaller ones. However, condensational growth alone is not capable to explain the large observed differences in DSD and RH because the respective growth speeds are too slow to explain the observed phenomena. Other mechanisms play key roles as well. Possible processes leading to the large observed differences in RH and DSD include turbulence induced collision and coalescence, and heterogeneous mixing. More analyses including fog droplet chemistry and dynamic microphysical modeling are required to further study these processes. To our knowledge, this is the first experimental field observation of the anti-correlation between RH and LWC in fog.  相似文献   
16.
Nutrient fluxes across terrestrial-aquatic boundaries and their subsequent integration into lake nutrient cycles are currently a major topic of aquatic research. Although pollen represents a good substrate for microorganisms, it has been neglected as a terrestrial source of organic matter in lakes. In laboratory experiments, we incubated pollen grains of Pinus sylvestris in water of lakes with different trophy and pH to estimate effects of pollen input and its subsequent microbial degradation on nutrient dynamics. In this ex situ experiment, we measured concentrations of organic carbon, phosphorus and nitrogen in the surrounding water as well as microbial dynamics (bacteria and fungal sporangia) at well-controlled conditions. Besides leaching, chemical and microbial decomposition of pollen was strongest within the first week of incubation. This led to a marked increase of soluble reactive phosphorus and total dissolved nitrogen (up to 0.04 and 1.5 mg L−1, respectively, after 5 days of incubation) in the ambient water. In parallel, pollen grains were rapidly colonized by heterotrophic bacteria and aquatic fungi. Leaching and microbial degradation of pollen accounted for ≥80, ≥40, ≥50% for organic C, N and P, respectively, and did not significantly differ among water samples from the studied lakes. Thus, pollen introduces high amounts of bio-available terrestrial organic matter and nutrients into surface waters within a short time. A rough calculation on P input into oligotrophic Lake Stechlin indicates that pollen plays an important ecological role in nutrient cycling of temperate lakes. This requires further attention in aquatic ecology.  相似文献   
17.
18.
19.
Dawn spacecraft orbited Vesta for more than one year and collected a huge volume of multispectral, high-resolution data in the visible wavelengths with the Framing Camera. We present a detailed disk-integrated and disk-resolved photometric analysis using the Framing Camera images with the Minnaert model and the Hapke model, and report our results about the global photometric properties of Vesta. The photometric properties of Vesta show weak or no dependence on wavelengths, except for the albedo. At 554 nm, the global average geometric albedo of Vesta is 0.38 ± 0.04, and the Bond albedo range is 0.20 ± 0.02. The bolometric Bond albedo is 0.18 ± 0.01. The phase function of Vesta is similar to those of S-type asteroids. Vesta’s surface shows a single-peaked albedo distribution with a full-width-half-max ∼17% relative to the global average. This width is much smaller than the full range of albedos (from ∼0.55× to >2× global average) in localized bright and dark areas of a few tens of km in sizes, and is probably a consequence of significant regolith mixing on the global scale. Rheasilvia basin is ∼10% brighter than the global average. The phase reddening of Vesta measured from Dawn Framing Camera images is comparable or slightly stronger than that of Eros as measured by the Near Earth Asteroid Rendezvous mission, but weaker than previous measurements based on ground-based observations of Vesta and laboratory measurements of HED meteorites. The photometric behaviors of Vesta are best described by the Hapke model and the Akimov disk-function, when compared with the Minnaert model, Lommel–Seeliger model, and Lommel–Seeliger–Lambertian model. The traditional approach for photometric correction is validated for Vesta for >99% of its surface where reflectance is within ±30% of global average.  相似文献   
20.
Using a sample of 57 VLT FORS spectra in the redshift range 1.37< z < 3.40 and a comparison sample with 36 IUE spectra of local ( ) starburst galaxies we derive CIV equivalent width values and estimate metallicities of starburst galaxies as a function of redshift. Assuming that a calibration of the CIV equivalent widths in terms of the metallicity based on the local sample of starburst galaxies is applicable to high-z objects, we find a significant increase of the average metallicities from about 0.16 Z at the cosmic epoch corresponding to z ≈ 3.2 to about 0.42 Z at z ≈ 2.3. A significant further increase in metallicity during later epochs cannot be detected in our data. Compared to the local starburst galaxies our high-redshift objects tend to be overluminous for a given metallicity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号