首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   23篇
  国内免费   4篇
测绘学   3篇
大气科学   31篇
地球物理   36篇
地质学   106篇
海洋学   33篇
天文学   5篇
综合类   2篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   13篇
  2019年   10篇
  2018年   11篇
  2017年   15篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   16篇
  2009年   8篇
  2008年   16篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有232条查询结果,搜索用时 46 毫秒
41.
Individual aerosol particles collected in the Negev desert in Israel during a summer and winter campaign in 1996–1997 were analysed by scanning electron microscopy with energy-dispersive X-ray analysis. Hierarchical cluster analysis was performed to interpret the data on the basis of particle diameter and composition. Eleven particle classes (groups) provided clues on sources and/or particle formation. The summer samples were enriched in sulphates and mineral dusts; the winter samples contained more sea salts, aged sea salts, and industrial particles. The fine size fraction below 1 m diameter was enriched in secondary particles and showed evidence of atmospheric processing. The secondary sulphate particles were mainly attributed to long-range transport. A regional conversion from calcite to calcium sulphate occurred during summer. Industrial particles originating from local pollution appeared during winter.  相似文献   
42.
The Burdekin River is an example of a class of tropical streams which experience two to four orders of magnitude variation in discharge, in response to seasonal but erratic monsoonal rainfall. Floods of the Burdekin rise abruptly, reaching peak discharges of up to 40,000 m3 s-1 in less than 24 h; maintain peak flow for up to a few days, and recede exponentially. The geomorphology and deposits of these rivers reflect the extreme discharge fluctuations, and have not previously been described. A stretch of the upper Burdekin River comprising four bends and one straight reach was examined near the town of Charters Towers. The river bed is largely exposed for most of any year, with a small, misfit perennial channel carrying low stage flow. Major geomorphic elements of bends include point bars with ridge-and-swale topography, three distinct types of chute channels, avalanche slipfaces up to 5 m or more high around the downstream edges of bars, and on the outer part of one point bar an elevated, vegetated ridge. Straight reaches are flat or gently inclined, sand- and gravel-covered surfaces. Much of the river bed is covered by well sorted, in places gravelly, coarse to very coarse-grained sand with local accumulations of pebble to boulder gravel. Lower parts of the river bed are periodically draped by mud which is desiccated on exposure. Dunes and plane beds are the most commonly occurring bedforms, with local development of gravelly antidunes. Most bank tops and upper, vegetated bars are covered by silt and fine-grained sand. The river bed also hosts a low-diversity but locally high-abundance, flood-tolerant flora dominated by the paperbark tree Melaleuca argentea, which plays an important role in controlling the distribution of sediment. The gross geomorphology of the river bed and most of the sedimentary features are interpreted as having formed during major (bankfull or near bankfull) flows, which have a recurrence of about 18 years (based on 65 years hydrographic data). The initial rapid drop in discharge following flood peaks appears to preserve flood peak features on upper bars more or less intact, whereas lower areas are subjected to variable degrees of modification during falling stage and by more frequent, non-bankfull discharge events.  相似文献   
43.
44.
Hu  Dunxin  Wang  Fan  Sprintall  Janet  Wu  Lixin  Riser  Stephen  Cravatte  Sophie  Gordon  Arnold  Zhang  Linlin  Chen  Dake  Zhou  Hui  Ando  Kentaro  Wang  Jianing  Lee  Jae-Hak  Hu  Shijian  Wang  Jing  Zhang  Dongxiao  Feng  Junqiao  Liu  Lingling  Villanoy  Cesar  Kaluwin  Chalapan  Qu  Tangdong  Ma  Yixin 《中国海洋湖沼学报》2020,38(4):906-929
The Western Tropical Pacific(WTP) Ocean holds the largest area of warm water(28℃) in the world ocean referred to as the Western Pacific Warm Pool(WPWP),which modulates the regional and global climate through strong atmospheric convection and its variability.The WTP is unique in terms of its complex 3-D ocean circulation system and intensive multiscale variability,making it crucial in the water and energy cycle of the global ocean.Great advances have been made in understanding the complexity of the WTP ocean circulation and associated climate impact by the international scientific community since the 1960 s through field experiments.In this study,we review the evolving insight to the 3-D structure and multi-scale variability of the ocean circulation in the WTP and their climatic impacts based on in-situ ocean observations in the past decades,with emphasis on the achievements since 2000.The challenges and open que stions remaining are reviewed as well as future plan for international study of the WTP ocean circulation and climate.  相似文献   
45.
46.
47.
48.
49.
50.
The Early Cretaceous hyperextended Mauléon rift is localized in the north‐western Pyrenean orogen. We infer the Tertiary evolution of the Mauléon basin through the restoration of a 153‐km‐long crustal‐scale balanced cross‐section of the Pyrenean belt, which documents at least 67 km (31%) of orogenic shortening in the Western Pyrenees. Initial shortening, accommodated through inversion of inherited crustal structures, led to formation of a pop‐up structure, in which the opposite edges underwent similar shortening with different tectonic reactivation styles, localized versus. distributed. Underthrusting of the Iberian margin accommodated further convergence, forming the Axial Zone antiformal stack of crustal nappes within a lithospheric pop‐up. Thin‐skinned and thick‐skinned structures propagated outward from the heart of this pop‐up, a block of strong mantle acting as a buttress inhibiting complete inversion of the Mauléon rift basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号