The solitary ascidian, Ciona savignyi (Ascidiacea, Enterogona) is a notorious marine invader still expanding its habitat range worldwide. This species is considered native to the North West Pacific, but its indigeneity in Korean coastal waters has been questioned because of outdated taxonomic records and its inhabitation of oceanographically marginal areas. To clarify their cryptic invasion state, 247 individual C. savignyi samples were collected from 12 harbors and marinas on the Korean coast, and a 744 bp region of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I gene was sequenced and analyzed. Our analyses of population genetic structure and demographic history provided considerable pieces of evidence supporting their long-term establishment on the Korean coasts: differentiated population genetic structure, sequentially arrayed star-shape haplotype network, neutrality test results of past population expansions, and post-glacial colonization pattern of demography. Consequently, we concluded that C. savignyi populations on the Korean Coast are indigenous rather than exotic. These results could be used as reference data for further phylogeo graphic and demographic studies of problematic Ciona species, and to clarify and resolve similar cryptic invasion states of the other Korean coastal marine organisms. This study is the first to resolve the cryptic in vasion state of Korean marine organisms using genetic analysis.
In a small island country like Taiwan, where the coastal zones have been heavily utilized, it is critical for the government to protect the health of near shore aquatic environment by enforcing the Marine Pollution Control Act (MPCA). However, the implementation of an effective plan based on MPCA is challenging local area. This is particular the case in the local level when the cross linkage among all related agencies is generally lacking. In 2004, the Kaohsiung city was aware of the shortfalls and then implemented an integrated marine pollution management system. The new system was adopted an action plan, that integrates all agencies with a strong communication mechanism. The encouraging results have shown substantial resource savings and a great improvement in water quality in the Kaohsiung marine environment. The success of this case reflects the needs for the concept of the integrated coastal zone management when dealing with marine affairs. 相似文献
The history of Korean tidal flat management and the process for designating Coastal Wetland Protected Areas (CWPAs) are described. Korean coastal wetlands have a long history of intensive use through reclamation for agricultural and industrial uses in the 20th century. Recently, the management policy is shifting away from intensive use towards the conservation of wetlands. This shift is caused by increasing public awareness of the value of wetlands and strong institutional support from the government. Since the Wetlands Conservation Act was passed in 1999, a total of twelve CWPAs have been designated through both top-down and bottom-up processes. Three designation paths are classified based on the relevant drivers, namely government-driven designations (seven CWPAs), local community driven designations (three CWPAs), and conflict resolution (trade-offs) driven designation (two CWPAs). The lessons learned from the designation of Korean CWPAs is that diversification of designation process could facilitate voluntary participation of local stakeholders and thereby enhance the chance of successful implementation of wise use strategy of tidal flats. 相似文献
Radio emission by pulsars is calculated from first principles. In an almost current-free magnetosphere, the two charged components (of the unsteadily escaping pair plasma) have different (and varying) bulk Lorentz factors. Curvature radiation emitted by the more energetic component is thus locally coherent, (so-called antenna mechanism). Strong enough seed signals cause the relativistically streaming charges to enhance their radiation, via an induced drift that can largely exceed the curvature drift. This amplification mechanism is similar to - but different from - that of a maser; we call it a MAIDER. Maximal amplification occurs at an (emission) altitude where the two components have sufficiently separated in energy though not yet separated too strongly in space. 相似文献