首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1714篇
  免费   87篇
  国内免费   38篇
测绘学   46篇
大气科学   129篇
地球物理   313篇
地质学   650篇
海洋学   105篇
天文学   420篇
综合类   10篇
自然地理   166篇
  2024年   5篇
  2023年   5篇
  2022年   9篇
  2021年   42篇
  2020年   37篇
  2019年   39篇
  2018年   49篇
  2017年   48篇
  2016年   58篇
  2015年   50篇
  2014年   51篇
  2013年   82篇
  2012年   65篇
  2011年   84篇
  2010年   85篇
  2009年   122篇
  2008年   90篇
  2007年   103篇
  2006年   91篇
  2005年   66篇
  2004年   85篇
  2003年   59篇
  2002年   64篇
  2001年   53篇
  2000年   41篇
  1999年   39篇
  1998年   47篇
  1997年   20篇
  1996年   20篇
  1995年   28篇
  1994年   22篇
  1993年   10篇
  1992年   23篇
  1991年   7篇
  1989年   10篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
  1970年   4篇
  1969年   5篇
排序方式: 共有1839条查询结果,搜索用时 15 毫秒
61.
New U–Th–Ra, major and trace element, and Sr–Nd–Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc–continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc–continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.  相似文献   
62.
The occurrence of a charnockitised felsic gneiss adjacent to a marble/calc-silicate horizon at Nuliyam, southern India, has been cited in recent literature as a classic example of the dehydration of crustal rocks resulting from the advective infiltration of CO2-rich fluids generated from a local carbonate source. Petrographic study of the Nuliyam calc-silicate, however, reveals it to consist of abundant wollastonite and scapolite and contain locally discordant veins rich in wollastonite. At the pressure—temperature conditions proposed for charnockite formation in recent studies, 5 kbar and 725°C, this wollastonite-bearing mineral assemblage was stable in the presence of a fluid phase only if X CO2 was near 0.25 and could not have coexisted with the fluid causing biotite breakdown and charnockite development in adjacent rocks (X CO2>0.85). The stable coexistence of wollastonite and scapolite prohibits the calc-silicate from being a source for fluid driving charnockitisation at the required P-T conditions. Textural observations such as the limited replacement of wollastonite by calcite+quartz symplectites and mosaics, are consistent with late fluid infiltration into the calc-silicate. The extensive isotopic, chemical and mineral abundance data of Jackson and Santosh (1992) are re-interpreted and integrated with these observations to develop a model involving the infiltration of an externally derived CO2-rich fluid during high-temperature decompression. Increased charnockite development next to the calc-silicate has arisen because the calc-silicate acted as a relatively unreactive and impermeable barrier to fluid transport and caused fluid ponding beneath antiformal closures. The Nuliyam charnockite/calc-silicate locality is an example of a structural trap in a metamorphic setting rather than a site where charnockite formation can be attributed to local fluid sources.  相似文献   
63.
To provide constraints on the speciation of bacterial surface functional groups, we have conducted potentiometric titrations using the gram-positive aerobic species Bacillus subtilis, covering the pH range 2.1 to 9.8. Titration experiments were conducted using an auto-titrator assembly, with the bacteria suspended in fixed ionic strength (0.01 to 0.3 M) NaClO4 solutions. We observed significant adsorption of protons over the entire pH range of this study, including to the lowest pH values examined, indicating that proton saturation of the cell wall did not occur under any of the conditions of the experiments. Ionic strength, over the range studied here, did not have a significant effect on the observed buffering behavior relative to experimental uncertainty. Electrophoretic mobility measurements indicate that the cell wall is negatively charged, even under the lowest pH conditions studied. These experimental results necessitate a definition of the zero proton condition such that the total proton concentration at the pH of suspension is offset to account for the negative bacterial surface charge that tends towards neutrality at pH <2.The buffering intensity of the bacterial suspensions reveals a wide spread of apparent pKa values. This spread was modeled using three significantly different approaches: a Non-Electrostatic Model, a Constant Capacitance Model, and a Langmuir-Freundlich Model. The approaches differ in the manner in which they treat the surface electric field effects, and in whether they treat the proton-active sites as discrete functional groups or as continuous distributions of related sites. Each type of model tested, however, provides an excellent fit to the experimental data, indicating that titration data alone are insufficient for characterizing the molecular-scale reactions that occur on the bacterial surface. Spectroscopic data on the molecular-scale properties of the bacterial surface are required to differentiate between the underlying mechanisms of proton adsorption inherent in these models. The applicability and underlying conceptual foundation of each model is discussed in the context of our current knowledge of the structure of bacterial cell walls.  相似文献   
64.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   

65.
Subduction-related Quaternary volcanic rocks from Solander and Little Solander Islands, south of mainland New Zealand, are porphyritic trachyandesites and andesites (58.20–62.19 wt% SiO2) with phenocrysts of amphibole, plagioclase and biotite. The Solander and Little Solander rocks are incompatible element enriched (e.g. Sr ~931–2,270 ppm, Ba ~619–798 ppm, Th ~8.7–21.4 ppm and La ~24.3–97.2 ppm) with MORB-like Sr and Nd isotopic signatures. Isotopically similar quench-textured enclaves reflect mixing with intermediate (basaltic-andesite) magmas. The Solander rocks have geochemical affinities with adakites (e.g. high Sr/Y and low Y), whose origin is often attributed to partial melting of subducted oceanic crust. Solander sits on isotopically distinct continental crust, thus excluding partial melting of the lower crust in the genesis of the magmas. Furthermore, the incompatible element enrichments of the Solander rocks are inconsistent with partial melting of newly underplated mafic lower crust; reproduction of their major element compositions would require unrealistically high degrees of partial melting. A similar argument precludes partial melting of the subducting oceanic crust and the inability to match the observed trace element patterns in the presence of residual garnet or plagioclase. Alternatively, an enriched end member of depleted MORB mantle source is inferred from Sr, Nd and Pb isotopic compositions, trace element enrichments and εHf ? 0 CHUR in detrital zircons, sourced from the volcanics. 10Be and Sr, Nd and Pb isotopic systematics are inconsistent with significant sediment involvement in the source region. The trace element enrichments and MORB-like Sr and Nd isotopic characteristics of the Solander rocks require a strong fractionation mechanism to impart the high incompatible element concentrations and subduction-related (e.g. high LILE/HFSE) geochemical signatures of the Solander magmas. Trace element modelling shows that this can be achieved by very low degrees of melting of a peridotitic source enriched by the addition of a slab-derived melt. Subsequent open-system fractionation, involving a key role for mafic magma recharge, resulted in the evolved andesitic adakites.  相似文献   
66.
Understanding the mobility of chemical elements during fluid–rock interactions is critical to assess the geochemical evolution of a rock undergoing burial and metamorphism and, more generally, to constrain the geochemical budget of the subduction factory. In particular, determining the behavior and mobility of Ti in aqueous fluids constitutes a great challenge that is still under scrutiny. Here, we study plant fossils preserved in blueschist metasedimentary rocks from the Marybank Formation (New Zealand). Using scanning and transmission electron microscopies (SEM and TEM), we show that the carbonaceous material (CM) composing the fossils contains abundant nano-inclusions of Ti- and Fe-oxides. These nanocrystals are mainly anatase, rutile, and Fe–Ti oxides. The mineral composition observed within the fossils is significantly different from that detected in the surrounding rock matrix. We propose that Ti and Fe might have been mobilized by the alteration of a detrital Ti–Fe-rich protolith during an early diagenetic event under acidic and reducing conditions. Aqueous fluids rich in organic ligands released by the degradation of organic matter may have been involved. Moreover, using mass balance and petrological observations, we show that the contrasted mineralogy between the rock matrix and the fossil CM might be the consequence of the chemical isolation of fossil CM during the prograde path of the rock. Such an isolation results from the early formation of quartz and Fe-rich phyllosilicate layers enclosing the fossil as characterized by SEM and TEM investigations. Overall, this study shows that investigating minerals associated with CM down to the nanometer scale in metamorphic rocks can provide a precious record of early prograde geochemical conditions.  相似文献   
67.
The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine–augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca–Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in \(\log [(a_{{{\text{Na}}^{ + } }} )/(a_{{{\text{H}}^{ + } }} )]\) and decrease in \(\log [(a_{{{\text{Ca}}^{2 + } }} )/(a_{{{\text{H}}^{ + } }}^{2} )]\) of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.  相似文献   
68.
We present a detailed study of the co-diagenesis of Fe and P in hydrothermal plume fallout sediments from ∼19°S on the southern East Pacific Rise. Three distal sediment cores from 340-1130 km from the ridge crest, collected during DSDP Leg 92, were analysed for solid phase Fe and P associations using sequential chemical extraction techniques. The sediments at all sites are enriched in hydrothermal Fe (oxyhydr)oxides, but during diagenesis a large proportion of the primary ferrihydrite precipitates are transformed to the more stable mineral form of goethite and to a lesser extent to clay minerals, resulting in the release to solution of scavenged P. However, a significant proportion of this P is retained within the sediment, by incorporation into secondary goethite, by precipitation as authigenic apatite, and by readsorption to Fe (oxyhydr)oxides. Molar P/Fe ratios for these sediments are significantly lower than those measured in plume particles from more northern localities along the southern East Pacific Rise, and show a distinct downcore decrease to a depth of ∼12 m. Molar P/Fe ratios are then relatively constant to a depth of ∼35 m. The Fe and P speciation data indicate that diagenetic modification of the sediments is largely complete by a depth of 2.5 m, and thus depth trends in molar P/Fe ratios can not solely be explained by losses of P from the sediment by diffusion to the overlying water column during early diagenesis. Instead, these sediments are likely recording changes in dissolved P concentrations off the SEPR, possibly as a result of redistribution of nutrients in response to changes in oceanic circulation over the last 10 million years. Furthermore, the relatively low molar P/Fe ratios observed throughout these sediments are not necessarily solely due to losses of scavenged P by diffusion to the overlying water column during diagenesis, but may also reflect post-depositional oxidation of pyrite originating from the volatile-rich vents of the southern East Pacific Rise. This study suggests that the molar P/Fe ratio of oxic Fe-rich sediments may serve as a proxy of relative changes in paleoseawater phosphate concentrations, particularly if Fe sulfide minerals are not an important component during transport and deposition.  相似文献   
69.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   
70.
黑龙江杂岩的碎屑锆石年代学及其大地构造意义   总被引:9,自引:9,他引:9  
黑龙江杂岩带位于佳木斯地体西缘,为佳木斯地体向西与松嫩地体之间俯冲、拼贴、碰撞而形成的高压变质带.黑龙江杂岩沿牡丹江断裂分布,其构造-岩石组合、变质变形特征等显示其为佳木斯地体向松嫩地体俯冲拼帖的过程中形成的增生杂岩,目前保存下来的杂岩带应为大规模增生楔仰冲到佳木斯地体之上的残余部分.88颗碎屑锆石的全部样品SHRIMPU-Ph年代学测试结果显示三个主要年龄区间:170~220Ma,峰值年龄为183Ma;240~338Ma,峰值年龄为256Ma;450~520Ma,峰值年龄为470Ma.而28个碎屑锆石谐和年龄的年龄谱为两组:240~338Ma,峰值年龄为256Ma;450~500Ma,峰值年龄为470Ma.碎屑锆石年龄数据分析得到,240~338Ma峰期年龄为256Ma的年龄应代表黑龙江杂岩主体岩石的沉积年龄上限;而450~500Ma的年龄谱对应于佳木斯地体的基底变质岩年龄,显示佳木斯地体的基底变质岩曾为黑龙江杂岩的物源区;而170~210Ma,峰期年龄为183Ma的不谐和年龄应为受印支期-早侏罗世构造热事件的扰动年龄,与该区变质单矿物的Ar-Ar年龄相一致,应代表了该区陆-陆碰撞的时代.上述年龄为黑龙江杂岩的形成与演化提供了重要的地质年代学制约,即黑龙江杂岩的原岩成岩时代上限为早三叠世,佳木斯地体向西的俯冲时代主体为印支期,而陆-陆拼贴及碰撞过程主要为晚印支期并可能持续到早侏罗世.这些结果将为揭示我国东北地区构造演化的年代学格架以及三叠纪古亚洲构造域向环太平洋构造域叠加和转换的动力学背景研究提供新的基本地质事实依据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号