首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   15篇
  国内免费   11篇
测绘学   8篇
大气科学   43篇
地球物理   84篇
地质学   111篇
海洋学   145篇
天文学   78篇
综合类   8篇
自然地理   22篇
  2021年   2篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   17篇
  2016年   21篇
  2015年   12篇
  2014年   16篇
  2013年   27篇
  2012年   11篇
  2011年   17篇
  2010年   15篇
  2009年   22篇
  2008年   25篇
  2007年   27篇
  2006年   22篇
  2005年   25篇
  2004年   28篇
  2003年   17篇
  2002年   14篇
  2001年   13篇
  2000年   17篇
  1999年   15篇
  1998年   15篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
401.
Effect of macropores on soil freezing and thawing with infiltration   总被引:3,自引:0,他引:3       下载免费PDF全文
An understanding of heat transport and water flow in unsaturated soils experiencing freezing and thawing is important when considering hydrological and thermal processes in cold regions. Macropores, such as cracks, roots, and animal holes, provide efficient conduits for enhanced infiltration, resulting in a unique distribution of water content. However, the effects of macropores on soil freezing and thawing with infiltration have not been well studied. A one‐directional soil‐column freezing and thawing experiment was conducted using unsaturated sandy and silt loams with different sizes and numbers of macropores. During freezing, macropores were found to retard the formation of the frozen layer, depending on their size and number. During thawing, water flowed through macropores in the frozen layer and reached the underlying unfrozen soil. However, infiltrated water sometimes refroze in a macropore. The ice started to form at near inner wall of the macropore, grew to the centre, and blocked flow through the macropore. The blockage ice in the macropore could not melt until the frozen layer disappeared. Improving a soil freezing model to consider these macropore effects is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
402.
While widely known for their destructive power, typhoon events can also bring benefit to coral reef ecosystems through typhoon-induced cooling which can mitigate against thermally stressful conditions causing coral bleaching. Sensor deployments in Sekisei Lagoon, Japan’s largest coral reef area, during the summer months of 2013, 2014, and 2015 were able to capture local hydrodynamic features of numerous typhoon passages. In particular, typhoons 2015-13 and 2015-15 featured steep drops in near-bottom temperature of 5 °C or more in the north and south sides of Sekisei Lagoon, respectively, indicating local cooling patterns which appeared to depend on the track and intensity of the passing typhoon. This was further investigated using Regional Ocean Modeling System (ROMS) numerical simulations conducted for the summer of 2015. The modeling results showed a cooling trend to the north of the Yaeyama Islands during the passage of typhoon 2015-13, and a cooling trend that moved clockwise from north to south of the islands during the passage of typhoon 2015-15. These local cooling events may have been initiated by the Yaeyama Islands acting as an obstacle to a strong typhoon-generated flow which was modulated and led to prominent cooling of waters on the leeward sides. These lower temperature waters from offshore may then be transported to the shallower inner parts of the lagoon area, which may partly be due to density-driven currents generated by the offshore-inner area temperature difference.  相似文献   
403.
The importance of the North Pacific Intermediate Water as a sink for the anthropogenic carbon dioxide has been examined by mapping chemical and radiochemical properties at two isopycnal surfaces of of 26.6 ad 27.2 obtained in 1970's. Its radiocarbon contents in 1980's were determined for comparison. The isopleths of depth and salinity at the two isopycnal surfaces obviously show that the intermediate layer of the entire mid-latitudes of the North Pacific is occupied by a similar water mass. The distributions of dissolved oxygen contents and Si/N ratios in the intermediate water indicate its source in the northwestern North Pacific and its sink in the eastern Pacific. The 14C values clearly designate the intrusion of the artificial radiocarbon of mostly 1960's origin into the upper intermediate water of the western North Pacific having its maximum in the subarctic zone of 40–45°N and 160–180°E in 1973. The maximum region for tritium is much broader extending to the north. These suggest that the subboreal region is active in the gas exchange and/or the warm water residing for a long time at the surface and flowing into the region across the subarctic front sinks quickly in winter. At the lower isopycnal surface, the increase 14C value for 14±4 years was around 27, which is smaller than that expected from the total carbonate increase, indicating an active isopycnal mixing.  相似文献   
404.
405.
406.
To examine the fatigue process of granite, cylindrical Westerly granite specimens, 10 mm in diameter and 20 mm in length, were subjected to a cyclic loading test under uniaxial compression with a maximum of 140 MPa at room temperature, and crack growth patterns within them were analyzed by microscopic observation and image analysis techniques. The fatigue process is divided into three characteristic stages; a primary stage in which the upper peak strain increases at a decelerating rate (stage I), a second stage with linearly slight increasing rate of strain following stage I (stage II), and the third and final stage in which the upper peak strain increases at an accelerating rate and culminates in specimen failure (stage III). A series of prefailure specimens, of which the stage in the fatigue process was decided by monitoring the strain behavior during the test, were retrieved. In addition, these specimens were compared with specimens stressed to close to the breaking strength by monotonic compression to examine the characteristic features of fatigue. The fluorescent method was applied to identify microcracks within the specimens. The advantage of this method is to provide quick and accurate identification of microcracks with an optical microscope. Microcracks are detected based on a marked difference in brightness under ultraviolet light irradiation because they are fully filled with acrylic resin mixed with a fluorescent substance in advance. Thin sections, including the axis of the specimen, 10 × 20 mm, were prepared for detailed observation after the pretreatment of the method.The results were as follows. At the initial degradation stage, distinguishing crack growth was identified in quartz grains. It is estimated that the slowdown of the strain growth rate at this stage was caused by the decrease in crack growth, that is, the portions with cracking potentiality were damaged at the first or early loading, and no further damage occurred immediately following the first damage. At the second stage, no significant crack growth in quartz grains was identified. On the other hand, in feldspar grains, development of cracks in a preferential direction, parallel to the loading direction, was observed. However, they did not grow into intergranular cracks by cutting across the grain boundaries during this stage. Consequently, it was found that a gradual progress of microcracks within feldspar grains was dominant during the second stage, and this is because the strain growth rate was in a steady and long state. At the final accelerated stage, many intergranular cracks running parallel to the loading direction were identified. It is obvious that these long cracks were formed mainly by the linking and growth of the intragranular cracks in feldspars, which were generated during the former stages. Their formation takes the fatigue process from the second stage to the final stage with a sharp increase in strain, and their further development seemed to lead the whole specimen to ultimate fatigue failure.  相似文献   
407.
Wakefieldite‐(Nd), NdVO4, is a new mineral found from the Arase stratiform ferromanganese deposit in Kochi Prefecture, Shikoku Island, Japan. It is the Nd‐dominant analogue of wakefieldite‐(Y) and wakefieldite‐(Ce). The ferromanganese ore specimen mainly consists of hematite and caryopilite, and wakefieldite‐(Nd) is typically enclosed in caryopilite. Wakefieldite‐(Nd) is tetragonal, I41/amd, a = 7.338(16) Å, c = 6.509(19) Å, V = 350.5(18) Å3, Z = 4. The four strongest lines in the X‐ray diffraction pattern [d(Å), I/I0, hkl] using a Gandolfi camera are (3.67, 100, 200); (2.74, 51, 112); (4.84, 27, 101) and (1.89, 25, 312). Chemical composition of wakefieldite‐(Nd) are V2O3 35.25, As2O3 0.93, SiO2 0.14, MnO 1.45, Fe2O3 0.41, Y2O3 2.87, La2O3 7.61, Ce2O3 7.37, Pr2O3 6.04, Nd2O3 26.79, Sm2O3 4.41, Eu2O3 1.36, Gd2O3 3.41, Tb2O3 0.22, Dy2O3 1.41, Er2O3 0.10, total 99.77 wt.%. The empirical formula is (Nd0.403La0.118Ce0.114Pr0.093Y0.064Sm0.064Mn0.052Gd0.048Eu0.020Dy0.019Fe0.013Tb0.003Er0.001)1.012(V0.981As0.020Si0.006)1.007O4 on the basis of O = 4. The calculated density is 4.782 g/cm3. Microtexture and co‐existing relationship between wakefieldite‐(Nd) and caryopilite suggest that recrystallization and dehydration of Fe‐ and Mn‐oxyhydroxide led to the generation of hematite, caryopilite, rhodochrosite and wakefieldite‐(Nd) by the metamorphism during the accretion of the host unit of the Arase deposit. Chondrite‐normalized REE pattern of the host ferromanganese ore, which is regarded as oceanic metalliferous sediment in origin, shows negative Ce anomaly. Chemical composition of wakefieldite‐(Nd) reflects Ce‐depleted bulk composition of REE‐enriched ferromanganese ore.  相似文献   
408.
Two simple models are presented for describing the surface energy budget above vegetated surfaces. One is the traditional single-source model that includes only one energy budget equation for the entire canopy-soil system, and the other is the double-source model that includes separate energy budget equations for the vegetation canopy and the underlying soil surface. In both models, the bulk transfer coefficients needed to solve the energy budget equations are parameterized as functions of leaf area index, leaf transfer coefficients, and soil surface roughnesses to obtain the best fit to values calculated by a standard multilayer-canopy model. The validity of these models was tested by comparing their performance with that of the multilayer-canopy model for simulation of the surface energy balance and nocturnal drainage flow above vegetation. Results show that the double-source model gives reliable estimations for all cases ranging from sparse to dense vegetation covers; the single-source model is only applicable to dense, fully-covered vegetation. It is also shown that sparse vegetation weakens nocturnal drainage flow, since it isolates the cool underlying soil surface from the atmosphere above the canopy. This phenomenon cannot be described by a traditional single-source model incorporated commonly in many atmospheric models; however, the double-source model adequately describes this process.  相似文献   
409.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   
410.
Geochemical studies were conducted on the hydrothermally altered granitic rocks in the Ranong and Takua Pa tin‐fields in southern Thailand in order to investigate the mode of occurrence of REE (rare earth elements), with emphasis placed on a potential REE resource associated with granitic rocks in the Southeast Asian Tin Belt. The total REE (ΣREE) content of altered granitic rocks ranges from 130 to 350 ppm at Haad Son Paen (which is presently mined for kaolin clay) in the Ranong tin‐field, and that of altered granitic rocks and kaolinite veinlets reaches up to 424 ppm and 872 ppm, respectively, at Nok Hook in the Takua Pa tin‐field. Rare earth elements in the altered granitic rocks and kaolinite veinlets show a relatively flat chondrite‐normalized pattern, thus enriched in heavy REE compared with the original granitic rocks and their weathered crusts. At Nok Hook (Takua Pa), the ΣREE content of kaolinite separated from an altered granitic rock by elutriation is 1313 ppm, a ΣREE amount about four times higher than that of whole‐rock composition of the altered granitic rock. Chondrite‐normalized REE patterns of the elutriated kaolinite and of the altered granite are relatively flat. Sequential extraction experiments suggest that 41 and 85 percent of REE are present as ion exchangeable‐form in the altered granitic rock, and in the kaolinite veinlets, respectively. In addition, more than 90% of REE in the kaolinite veinlets are present as the acid‐soluble state. On the other hand, the ΣREE content of kaolinite veinlets and of the kaolinite concentrated by elutriation from an altered granitic rock at Haad Som Paen (Ranong) is 70 ppm and 75 ppm, respectively, thus enrichment of REE in kaolinite was not confirmed. In addition, by the sequential extraction experiments, 23% and 4% of REE were extracted from the altered granitic rock and the kaolinite veinlets at Haad Som Paen. In the altered granitic rocks at Haad Som Paen, REE are present as refractory phases, and REE in the acid‐soluble states had been leached by hydrothermal fluid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号