首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   16篇
  国内免费   18篇
测绘学   4篇
大气科学   18篇
地球物理   106篇
地质学   121篇
海洋学   14篇
天文学   64篇
综合类   10篇
自然地理   19篇
  2024年   2篇
  2023年   2篇
  2022年   6篇
  2021年   5篇
  2020年   7篇
  2019年   10篇
  2018年   27篇
  2017年   18篇
  2016年   19篇
  2015年   27篇
  2014年   20篇
  2013年   31篇
  2012年   22篇
  2011年   27篇
  2010年   20篇
  2009年   13篇
  2008年   14篇
  2007年   17篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   5篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
121.
122.
Hansen’s coefficients in the theory of elliptic motion with eccentricity e are studied as functions of the parameter η = (1 − e 2)1/2. Their analytic behavior in the complex η plane is described and some symmetry relations are derived. In particular, for every Hansen coefficient, multiplication by suitable powers of e and η results in an entire analytic function of η. Consequently, Hansen’s coefficients can be in principle computed by means of rapidly convergent series in powers of η. A representation of Hansen’s coefficients in terms of two entire functions of e 2 follows.   相似文献   
123.
Proxy and instrumental records reflect a quasi-cyclic 50–80-year climate signal across the Northern Hemisphere, with particular presence in the North Atlantic. Modeling studies rationalize this variability in terms of intrinsic dynamics of the Atlantic Meridional Overturning Circulation influencing distribution of sea-surface-temperature anomalies in the Atlantic Ocean; hence the name Atlantic Multidecadal Oscillation (AMO). By analyzing a lagged covariance structure of a network of climate indices, this study details the AMO-signal propagation throughout the Northern Hemisphere via a sequence of atmospheric and lagged oceanic teleconnections, which the authors term the “stadium wave”. Initial changes in the North Atlantic temperature anomaly associated with AMO culminate in an oppositely signed hemispheric signal about 30?years later. Furthermore, shorter-term, interannual-to-interdecadal climate variability alters character according to polarity of the stadium-wave-induced prevailing hemispheric climate regime. Ongoing research suggests mutual interaction between shorter-term variability and the stadium wave, with indication of ensuing modifications of multidecadal variability within the Atlantic sector. Results presented here support the hypothesis that AMO plays a significant role in hemispheric and, by inference, global climate variability, with implications for climate-change attribution and prediction.  相似文献   
124.
The surface chemistry of natural wollastonite, diopside, enstatite, forsterite, and albite in aqueous solutions was characterized using both electrokinetic techniques and surface titrations performed for 20 min in batch reactors. Titrations performed in such reactors allow determination of both proton consumption and metal release from the mineral surface as a function of pH. The compositions, based on aqueous solution analysis, of all investigated surfaces vary dramatically with solution pH. Ca and Mg are preferentially released from the surfaces of all investigated divalent metal silicates at pH less than ∼8.5-10 but preferentially retained relative to silica at higher pH. As such, the surfaces of these minerals are Si-rich and divalent metal poor except in strongly alkaline solutions. The preferential removal of divalent cations from these surfaces is coupled to proton consumption. The number of protons consumed by the preferential removal of each divalent cation is pH independent but depends on the identity of the mineral; ∼1.5 protons are consumed by the preferential removal of each Ca atom from wollastonite, ∼3 protons are consumed by the preferential removal of each Mg or Ca atom from diopside or enstatite, and ∼4 protons are consumed by the preferential removal of each Mg from forsterite. These observations are interpreted to stem from the creation of additional ‘internal’ adsorption sites by the preferential removal of divalent metal cations which can be coupled to the condensation of partially detached Si. Similarly, Na and Al are preferentially removed from the albite surface at 2 > pH > 11; mass balance calculations suggest that three protons are consumed by the preferential removal of each Al atom from this surface over this entire pH range. Electrokinetic measurements on fresh mineral powders yield an isoelectric point (pHIEP) 2.6, 4.4, 3.0, 4.5, and <1, for wollastonite, diopside, enstatite, forsterite, and albite, respectively, consistent with the predominance of SiO2 in the surface layer of all of these multi-oxide silicates at acidic pH. Taken together, these observations suggest fundamental differences between the surface chemistry of simple versus multi-oxide minerals including (1) a dependency of the number and identity of multi-oxide silicate surface sites on the aqueous solution composition, and (2) the dominant role of metal-proton exchange reactions on the reactivity of multi-oxide mineral surfaces including their dissolution rate variation with aqueous solution composition.  相似文献   
125.
Large canyons incise the shelf break of the eastern Bering Sea to be preferred sites of the cross-shelf exchange. The mesoscale eddy activity is particularly strong near the shelf-break canyons. To study the mesoscale dynamics in the Navarin Canyon area of the Bering Sea, the time series of velocities derived from AVISO satellite altimetry between 1993 and 2015, drifters, Argo buoys, and ship-borne data are analyzed. We demonstrate that the strength of anticyclonic eddies along the shelf edge in spring and summer is determined by the wind stress in March–April. The increased southward wind stress in the central Bering Sea forced a supply of low-temperature and low-salinity outer shelf water to the deep basin and formation of the anticyclonic mesoscale circulation seaward of the Navarin Canyon. Enhanced northwestward advection of the Bering Slope Current water leads to increase in an ice-free area in March and April and increased bottom-layer temperature at the outer shelf. The strong (weak) northwestward advection of the eastern Bering Sea waters, determined by eastern winds in spring, creates favorable (unfavorable) conditions for the pollock abundance in the western Navarin Canyon area in summer.  相似文献   
126.
Miyazawa  Yasumasa  Yaremchuk  Max  Varlamov  Sergey M.  Miyama  Toru  Aoki  Kunihiro 《Ocean Dynamics》2020,70(8):1129-1149
Ocean Dynamics - Operational ocean nowcast/forecast systems require real-time sampling of oceanic data for representing realistic oceanic conditions. Satellite altimetry plays a key role in...  相似文献   
127.
Three‐dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore‐network models (“proxies”) using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post‐processing and validation can reduce uncertainty in the 3D‐printed proxy accuracy (difference of proxy geometry from the digital model). Post‐processing is a multi‐step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin‐section images of 3D‐printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D‐printed “gap test” wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (~13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15‐, 23‐, and 30‐fold magnifications to validate the workflow. Helium porosities of the 3D‐printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ~1% point), though uncertainties remain regarding the nature of sub‐micron “artifact” pores imparted by the 3D printing process. This study shows the benefits of including post‐processing and validation in any workflow to produce porous rock proxies.  相似文献   
128.
The paper proposes a high-level conceptual and technological approach to manage the ensemble-based simulation, taking into account changing states of both simulated system and system of models. The approach includes systematization of ensemble-based modeling and simulation techniques, analysis of simulation results, quality assessments, and detailed analysis of ensemble management procedures using classification operators. The technological basis for such an approach includes ensemble-based simulation techniques using domain-specific software combined within a composite application; data science approaches for analysis of available datasets (simulation data, observations, situation assessments, etc.). Within this work, a set of case studies is addressed to examine the opportunities provided by the developed approach considering ensemble-based simulation of storm surges for flood prediction in St. Petersburg, Russia as an example.  相似文献   
129.
Mesoscale circulation along the Sakhalin Island eastern coast   总被引:1,自引:1,他引:0  
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   
130.
The goal of wave‐mode separation and wave‐vector decomposition is to separate a full elastic wavefield into three wavefields with each corresponding to a different wave mode. This allows elastic reverse‐time migration to handle each wave mode independently. Several of the previously proposed methods to accomplish this task require the knowledge of the polarisation vectors of all three wave modes in a given anisotropic medium. We propose a wave‐vector decomposition method where the wavefield is decomposed in the wavenumber domain via the analytical decomposition operator with improved computational efficiency using low‐rank approximations. The method is applicable for general heterogeneous anisotropic media. To apply the proposed method in low‐symmetry anisotropic media such as orthorhombic, monoclinic, and triclinic, we define the two S modes by sorting them based on their phase velocities (S1 and S2), which are defined everywhere except at the singularities. The singularities can be located using an analytical condition derived from the exact phase‐velocity expressions for S waves. This condition defines a weight function, which can be applied to attenuate the planar artefacts caused by the local discontinuity of polarisation vectors at the singularities. The amplitude information lost because of weighting can be recovered using the technique of local signal–noise orthogonalisation. Numerical examples show that the proposed approach provides an effective decomposition method for all wave modes in heterogeneous, strongly anisotropic media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号