首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  国内免费   4篇
测绘学   5篇
大气科学   35篇
地球物理   45篇
地质学   24篇
海洋学   41篇
天文学   4篇
综合类   4篇
自然地理   5篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   14篇
  2015年   7篇
  2014年   16篇
  2013年   16篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   12篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  1999年   3篇
  1996年   1篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有163条查询结果,搜索用时 0 毫秒
51.
The surface albedo is an essential climate variable that is considered in many applications used for predicting climate and understanding the mechanisms of climate change. In this study, surface albedo was estimated using a bidirectional reflectance distribution function model based on Communication, Ocean and Meteorological Satellite/Meteorological Imager data. Geostationary orbiting satellite data are suitable for a level 2 product like albedo, which requires a synthetic process to estimate. The authors modified established methods to consider the geometry of the solar-surface-sensor of COMS/MI. Of note, the viewing zenith angle term was removed from the kernel integration used for estimating spectral albedo. Finally, the spectral (narrow) albedo was converted into the broadband albedo with shortwave length (approximately 0.3–2.5 μm). This study determined conversion coefficients using only one spectral albedo of visible channel. The estimated albedo had a relatively high correlation with Satellite Pour l’Observation de la Terre/Vegetation and low unweighted error values specific for land types or times. The validation results show that estimated albedo has a root mean square error of 0.0134 at Jeju flux site that indicates accuracy similar to that of other satellite-based products.  相似文献   
52.
Variations of global evapotranspiration (ET) and fresh water discharge from land to oceans (D) are important components of global climate change, but have not been well monitored. In this study, we present an estimate of twenty years (1989 to 2008) variations of global D and ET derived from satellite remote-sensed measurements and recent reanalysis products, ERA-Interim and CFSR, by using a novel application of the water balance equations separately over land and over oceans. Time series of annual mean global D and ET from both satellite observations and reanalyses show clear positive and negative trends, respectively, as a result of modest increase of oceanic evaporation (E o ). The inter-annual variations of D are similar to the in-situ-based observations, and the negative trend of ET supports the previous result that relative humidity has decreased while temperature has increased on land. The results suggest considerable sensitivity of the terrestrial hydrological cycles (e.g., D and ET) to small changes in precipitation and oceanic evaporation.  相似文献   
53.
We conducted experiments to determine the effect of various chemical components (NaCl, KCl, HCl, FeCl2, H2S, SO2) on the solubility of Cu in single phase aqueous vapors at 1000 °C and 150 MPa. The experiments were conducted in Au97Cu3 alloy capsules buffering Cu activities at 0.01. The volatile phase was sampled at run conditions by the entrapment of synthetic fluid inclusions in quartz. To test if the volatile phase had reached equilibrium before the isolation of the inclusions by fracture healing, we trapped two inclusion generations, one in an initially prefractured chip and another in a quartz chip that was fractured in situ during the experiments. The synthetic fluid inclusions were subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry. In pure water, the apparent solubility of Cu is below the limits of detection of 6 μg/g, showing the low stability of hydroxy Cu complexes at our experimental conditions. The presence of alkali chlorides supports modest Cu solubility likely in the form of NaCuCl2 and KCuCl2 complexes. In the H2O-H2S (+SiO2 and Au97Cu3) system at an fH2S of 10.4 MPa the apparent solubility of Cu is lower by a factor of ∼5 than that in a S-free 0.5 m NaCl solution, showing that copper hydrosulfide complexes are only moderately stable at these conditions. Addition of 4.7 mol% of sulfur to the H2O-NaCl system at an fO2 of 0.4 log units below the Ni-NiO buffer, yielding dominantly H2S species, results in only a moderate increase in apparent Cu solubility, which diminishes in the presence of HCl. The addition of KCl results in a strong increase of apparent Cu solubility in the presence of H2S. The solubility of Cu increases with the fugacity of oxygen in both the H2O-NaCl and the H2O-S-NaCl system following an approximately fourth root relationship as expected based on the stoichiometry of the involved redox reactions. Replacement of NaCl by FeCl2 exerted only a minor effect on the Cu solubility.Results of our experiments, combined with thermochemical data obtained by ab initio quantum chemical calculations, suggest dissolution of Cu dominantly as Na(/K)CuCl2, Na(/K)Cu(HS)2, H2SCuHS, and Na(/K)ClCuHS, the relative abundance of which are dictated by the H2S/total chloride and HCl/alkali chloride ratios.  相似文献   
54.
This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.  相似文献   
55.
The feasibility of linear and nonlinear geostatistical estimation techniques for optimal merging of rainfall data from raingage and radar observations is investigated in this study by use of controlled numerical experiments. Synthetic radar and raingage data are generated with their hypothetical error structures that explicitly account for sampling characteristics of the two sensors. Numerically simulated rainfall fields considered to be ground-truth fields on 4×4 km grids are used in the generation of radar and raingage observations. Ground-truth rainfall fields consist of generated rainfall fields with various climatic characteristics that preserve the space-time covariance function of rainfall events in extratropical cyclonic storms. Optimal mean areal precipitation estimates are obtained based on the minimum variance, unbiased property of kriging techniques under the second order homogeneity assumption of rainfall fields. The evaluation of estimated rainfall fields is done based on the refinement of spatial predictability over what would be provided from each sensor individually. Attention is mainly given to removal of measurement error and bias that are synthetically introduced to radar measurements. The influence of raingage network density on estimated rainfall fields is also examined.  相似文献   
56.
Bioturbation, especially sediment reworking by the activities of macroinvertebrates, such as feeding and burrowing, is one of the major processes that affect the physical, chemical, and biological characteristics of marine sediments. Given the importance of sediment reworking, this study was designed to evaluate the sediment reworking rate of a polychaete, Perinereis aibuhitensis, which is dominant in the upper tidal flats on the west coast of Korea, based on quantification of pellet production during spring and fall surveys. The density of individuals was higher in fall than in spring, whereas, due to a difference in the proportion of adults between the two seasons, the morphometric dimensions of the worm and its pellets were significantly longer and heavier in the spring. Hourly pellet production per inhabitant and density were closely related, with pellet production gradually decreasing as density increased. Daily pellet production was much higher in spring than in fall, mostly due to an increase in daytime production. The sediment reworking rate of Perinereis was similar in the two seasons in which observations were made and depended on its density and the sediment reworking rate per individual. The overall sediment reworking rate of Perinereis was 31 mm yr?1 based on its density in the study area.  相似文献   
57.
Constraints on gold and copper ore grades in porphyry-style Cu–Au ± Mo deposits are re-examined, with particular emphasis on published fluid pressure and formation depth as indicated by fluid inclusion data and geological reconstruction. Defining an arbitrary subdivision at a molar Cu/Au ratio of 4.0 × 104, copper–gold deposits have a shallower average depth of formation (2.1 km) compared with the average depth of copper–molybdenum deposits (3.7 km), based on assumed lithostatic fluid pressure from microthermometry. The correlation of Cu/Au ratio with depth is primarily influenced by the variations of total Au grade. Despite local mineralogical controls within some ore deposits, the overall Cu/Au ratio of the deposits does not show a significant correlation with the predominant type of Cu–Fe sulfide, i.e., chalcopyrite or bornite. Primary magma source probably contributes to metal endowment on the province scale and in some individual deposits, but does not explain the broad correlation of metal ratios with the pressure of ore formation. By comparison with published experimental and fluid analytical data, the observed correlation of the Cu/Au ratio with fluid pressure can be explained by dominant transport of Cu and Au in a buoyant S-rich vapor, coexisting with minor brine in two-phase magmatic hydrothermal systems. At relatively shallow depth (approximately <3 km), the solubility of both metals decreases rapidly with decreasing density of the ascending vapor plume, forcing both Cu and Au to be coprecipitated. In contrast, magmatic vapor cooling at deeper levels (approximately >3 km) and greater confining pressure is likely to precipitate copper ± molybdenum only, while sulfur-complexed gold remains dissolved in the relatively dense vapor. Upon cooling, this vapor may ultimately contract to a low-salinity epithermal liquid, which can contribute to the formation of epithermal gold deposits several kilometers above the Au-poor porphyry Cu–(Mo) deposit. These findings and interpretations imply that petrographic inspection of fluid inclusion density may be used as an exploration indicator. Low-pressure brine + vapor systems are favorable for coprecipitation of both metals, leading to Au-rich porphyry–copper–gold deposits. Epithermal gold deposits may be associated with such shallow systems, but are likely to derive their ore-forming components from a deeper source, which may include a deeply hidden porphyry–copper ± molybdenum deposit. Exposed high-pressure brine + vapor systems, or stockwork veins containing a single type of intermediate-density inclusions, are more likely to be prospective for porphyry–copper ± molybdenum deposits.  相似文献   
58.
59.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号