首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  国内免费   4篇
测绘学   5篇
大气科学   35篇
地球物理   45篇
地质学   24篇
海洋学   41篇
天文学   4篇
综合类   4篇
自然地理   5篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   14篇
  2015年   7篇
  2014年   16篇
  2013年   16篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   12篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  1999年   3篇
  1996年   1篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
161.
Radiative transfer model simulations were used to investigate the erythemal ultraviolet(EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors(CFEUV) for UV-A[CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from-5.0% to 25.0% for aerosols, and from-9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions(i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%–4.1% per 0.1 albedo change,depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.  相似文献   
162.
The western North Pacific subtropical high (WNPSH) is a crucial component of the East Asian summer monsoon (EASM) system and significantly influences the precipitation in East Asia. In this study, distinguished role of WNPSH on the EASM and Indian Ocean monsoon (IOM) are investigated. Based on the boreal summer mean field of 850-hPa geopotential height and its interannual variability, the WNPSH index (WNPSHI) is defined by the areaaveraged geopotential height over the region [110°–150°E, 15°–30°N]. The WNPSHI is significantly related to the precipitation over the East Asian monsoon (EAM) region [105°–150°E, 30°–40°N] and IOM region [70°–105°E, 5°–15°N]. Rainfalls over these two regions have good correlation with WNPSH developments and the geopotential height fields at 850 hPa related to the EAM precipitation and IOM precipitation have remarkably different teleconnection patterns in boreal summer. These features exhibit that EAM and IOM precipitations have different type of development processes associated with different type of WNPSH each other. Focusing on the relationships among the EAM precipitation, IOM precipitation, and the WNPSH variabilities, we assume that WNPSH and EAM precipitation are usually fluctuated simultaneously through the sea surface temperature (SST)-subtropical ridge-monsoon rainfall feedback, whereas the IOM precipitation varies through the different process. To clarify the relationships among WNPSH, EAM, and IOM, two cases are selected. The first one is the case that all of WNPSH, EAM, and IOM are in phase (WE(+)I(+)), and the second one is the case that WNPSH and EAM are in phase and WNPSH/EAM and IOM is out of phase (WE(+)I(?)). These two cases are connected to the thermal forcing associated with SST anomalies over the eastern Pacific and Indian Ocean. This different thermal forcing induces the change in circulation fields, and then anomalous circulation fields influence the moisture convergence over Asian monsoon regions interactively. Therefore, the monsoon rainfall may be changed according to the thermal conditions over the tropics.  相似文献   
163.
We comprehensively analyzed sediments obtained from an archeological excavation. A trench sediment profile of Maedun Cave (MC), South Korea, was analyzed geoarchaeologically. Multi-proxy analyses (palynomorphs, grain size, magnetic susceptibility, animal bones and artifacts) reflected the vegetation, hydroclimate and lives of prehistoric people at Marine Isotope Stage (MIS) 3 (ca. 40–30k cal a bp ) in the early Late Paleolithic. The palynoflora consisted of pollen and non-pollen palynomorphs. Under the air-circulation system in the cave, anemophilous pollen flowed in during the day, whereas waterborne pollen and spores, and freshwater algae, were transported by flooding during the summer monsoon rainy season. Mixed conifer and deciduous broad-leaved forest with an understory of pteridophytes flourished around the north-east central Korean Peninsula during MIS 3. Freshwater algae and grass pollen records may reflect precipitation intensity. It is assumed that they had flowed in during flooding caused by high precipitation during the enhanced East Asian summer monsoon, corresponding to Dansgaard–Oeschger (D/O) events 5 and 8 of δ18O GISP2 and Hulu Cave. The prehistoric people hunted herbivorous animals in the area around MC and sheltered inside it seasonally. They also used the grains of oats growing near the dwelling as a source of food.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号